PID 試験中の太陽電池モジュール内部の電流及び電界解析

Current and electric field analyses inside photovoltaic modules during PID acceleration test

[•]橘泰至¹,豊田丈紫¹,上田芳弘¹,山口世力²,大平圭介²,山本千津子³,増田淳³ (1.石川県工業試験場、2.北陸先端科学技術大学院大学、3.産業技術総合研究所)

[°]Yasushi Tachibana¹, Takeshi Toyoda¹, Yoshihiro Ueda¹, Seira Yamaguchi², Keisuke Ohdaira²,

Chizuko Yamamoto³, Atsushi Masuda³

(1 Industrial Research Institute of Ishikawa, 2 Japan Advanced Institute of Science and Technology,

3 National Institute of Advanced Industrial Science and Technology)

E-mail: tachi@irii.jp

1. 緒言

PID (Potential Induced Degradation)は、太陽電池 モジュールのフレームとセルの間に高電圧が印加 されることによって発電出力が低下する劣化現象 である。長期間の安定した発電を実現するために、 PID 発生メカニズムの解明に向けた研究を進めて いる。最近、アルミニウム(AI)を含むバックシー ト(BS)を用いた場合には、AI を含まない BS を用 いた場合よりも PID が起こり難い実験結果が得ら れた[1]。本研究では、PID に影響すると考えられ る太陽電池モジュール(モジュール)内部における 電流および電界の分布が、BS 材料やセルの電極形 状によってどのように変化するかを明らかにする ために、シミュレーション解析を行った。なお、 紙面の都合により、セルの電極形状の検討や、電 界解析については本稿では割愛する。

2. 解析

結晶シリコン系セルを用いたモジュールの解 析モデルを作成した。解析を実施する上での都合 により、ガラスは割愛し、セルの端部約5 mmの 二次元モデルを作成した。モデル(a)は BS を理想 的な絶縁体に設定した。モデル(b)は BS を Al に設 定した。PID 加速試験による電圧印加を模擬する ため、封止材の受光面側に密着設置した仮想電極 に0 V を、フィンガー電極及び裏面電極に-100 V を印加する際の解析を行った。各材料の物性値は 代表値とした。モデル(a)、(b)の電流密度と電流ベ クトルを解析した結果を図1、2に示す。図2 では、 ル(b)では、屈曲してセル端部に向かう電流ベクト ルとは別に、BS に向かう電流ベクトルが確認でき る。BS に電流が流入すると共に、BS からセル裏 面電極に向けて上向きの低い電流密度のベクトル がセル裏面電極直下全域に存在することを別途確 認している。ガラスに含まれるナトリウム(Na)が 電流経路に沿って移動し、セルに到達することに よって PID が生じると仮定するならば、モデル(a) ではモデル(b)よりも多くの Na がセル端部に到達 し、PID を促進している可能性がある。

3. 結言

BS の素材によってセル端部への電流集中の度 合いが異なる解析結果を得た。これは、BS の素材 の違いが PID の起こり易さに影響を与えることを 示唆する。なお、本解析は、電流および電界のみ を解析した結果であり、その他の化学的現象など については解析に反映できていない。本解析の有 効性を検証することが今後の課題であるとともに、 PID の起こりにくいモジュール部材や構造の提案 へと結び付けたい。

謝辞

本研究は、NEDO 委託研究の一環として行われ ました。産業技術総合研究所 柴田肇氏、城内紗千 子氏には解析の助言を頂きました。

参考文献

[1] 山口 他、学振 175 委員会第 15 回「次世代の 太陽光発電システム」 シンポジウム. PA-27 (2018).

クトルを解析した結果を図 ベクトルの長さおよび太さ が電流密度を表す。セル端 部付近の EVA では、電流ベ クトルが屈曲して、セル端 部に集中する様子が確認で きる。そして、BS が絶縁体 であるモデル(a)の方が、(b) よりもセル端部に電流が集 中する範囲が広く、程度も 強いことが分かった。モデ

