真空蒸着と低温アニールによる Sn 媒介 GeSn ナノドット形成 Formation of tin mediated GeSn nanodots by vacuum evaporation and low temperature annealing

T. Tawara², K. Tateno², G. Zhang², H. Gotoh², and H. Okamoto¹

E-mail: okamoto@eit.hirosaki-u.ac.jp

1. はじめに: IV 族混晶の GeSn は Sn 組成 10%近辺で直接 遷移化することからシリコンフォトニクスにおける発光デバ イスへの応用が期待されているが、Sn の固溶度が 1%と小さ く、その高組成化が難しいという課題がある。また、量子ド ット構造の形成により通信波長帯付近での発光も可能となる が、GeSn ナノドット成長に関する報告例は少ない[1]。

本研究室では Bi を媒介した Ge ナノドットの形成手法を考 案し[2]、低温のアニール処理によって Bi をほとんど含まない 結晶 Ge ナノドットが形成されることなどを報告してきた[3]。 この知見を応用し、今回新たに Sn を媒介材料とした GeSn ナ ノドットの低温形成を試みた。

2. 実験: 基板は Si 基板と 5 nm の熱酸化膜付き Si 基板の 2 種類とし、高真空蒸着装置を用いて基板温度 130℃ で媒介材 料の Sn を 0.0~0.4 nm 抵抗加熱蒸着後、Sn 組成 10%を目標と して Ge と Sn を同時に合計 1.3 nm 蒸着した (Ge:電子ビーム 蒸着、Sn:抵抗加熱蒸着)。続いて同蒸着装置内で 200℃、 230℃、260℃ の 3 条件で 30 分のアニール処理を行った。

3. 結果: STEM 観察によりアニール温度 200℃の試料にお いてもナノドット中に [111] 方向の格子配列が観察され、結 晶形成が認められた。ただし Si 基板上試料においては自然酸 化膜を介した成長となっていることがわかった。Fig. 1(a, b) に Sn 膜厚 0.2 nm の条件で作製した試料の HAADF-STEM 像 を示す。それぞれの形成条件は Si 基板上・アニール温度 200°C、及び熱酸化膜付き Si 基板上・アニール温度 260°C で ある。Table 1 に両試料の EDX 分析から得られた Sn 組成を示 す。Sn 組成はドット間及びドット中心部と表面付近で 3.1~ 17.5%程度という大きなばらつきがみられたが、Fig.1(b)の右 側のドットのように中心部、表面付近ともに Sn 組成 5%程度 で偏析が認められないものも存在した。Fig. 2(a-d)に Si 基板 上、260°Cアニールの条件で Sn 膜厚のみを変化させた試料の AFM 像(領域: 0.5 ×1.0 µm²) を示す。Sn を蒸着しない場合 には連続膜のような形状であったが、Sn を蒸着した場合には すべての膜厚においてナノドット形状が確認され、さらに Sn 膜厚によって形状の制御が可能であることがわかった。以上 の通り Sn を媒介材料として用いることにより結晶 GeSn ナノ ドットの低温形成ができることが示された。なお、200℃とい うアニール温度は Ge-Sn の共晶温度 230℃ よりも低いため、 固相成長が進行したものと考えられる。

(a) On Si substrate, with 200°C annealing.

(b) On SiO₂/Si substrate, with 260°C annealing .

Fig. 1. HAADF-STEM images of GeSn nanodots.

Table 1. Sn compositions (%) obtained by EDX.

point	Ge/(G	e + Sn)	point	Ge/(Ge	e + Sr	1)
11	14	.6	21	17	.5	
12	8.	5	22	3.	1	
13	10	.2	31	5.	0	
			32	4.	6	
			100		Cord C	
A. Car	• 2 E E	*				S.
100		and so	204	6.85		3
$E_{i} = \{i,j\}$	Star Star					
0.00		2.50				-
0.00	[nm]	3.50	0.00	[nm]	14.1.	3
(a) W/o	o Sn laye	r	(b) Sn	: 0.1 nm		
	845.00	135.00		的现在	1412	
	69.223		12.3	Sec.		ł,
43.5	A Secto		的日本	29253	1.13	X
1.04	6438	1923.54		法的考试	32	1
121712250			100			
0.00	[nm]	16.68	0.00	[nm]	7.65	5
(c) Sn:	0.2 nm		(d) Sn	: 0.4 nm		
Fig. 2. AFM images of GeSn nanodots on						

Si substrates with 260°C annealing.

謝辞:STEM 分析についてディスカッション頂いた NTT-AT の池田

高之氏と水野誠一郎氏に感謝する。本研究は JSPS 科研費 JP17K06338 の助成を受けた。 [1] Nakamura et al. J. Appl. Phys. 102, 124302 (2007). [2] 岡本他: 秋期応物学会 18p-F6-7 (2014). [3] 滝田他: 春期応物学会 15p-P7-3 (2017).