ミスト CVD 法による(111) 3C-SiC テンプレート基板への ε-Ga₂O₃へテロエピタキシャル成長

Heteroepitaxial growth of E-Ga₂O₃ thin films on (111) 3C-SiC templates

by mist chemical vapor deposition

大阪工大 ナノ材研¹, ^o(M2) 金子 豊和¹, 藤原 壮大¹, 小山 政俊¹, 前元 利彦¹, 佐々 誠彦¹ Nanomaterials and Microdevices Research Center, Osaka Institute of Technology, <u>Toyokazu Kaneko</u>, Sodai Fujiwara, Masatoshi Koyama, Toshihiko Maemoto, and Shigehiko Sasa

E-mail: t.kaneko916@gmail.com

Ga₂O₃ は約 5.0 eV のバンドギャップを持つ半導体材料としてパワーデバイスや深紫外光検出デバイスへの応用に向けて研究が盛んに行われている. Ga₂O₃ の準安定構造の一つである ε-Ga₂O₃ は自発分極を持つことが報告されており[1,2],強誘電体薄膜や分極に起因する二次元電子ガスを用いたデバイスへの応用が期待され,HVPE 法[3]や MOCVD 法[4]などの種々の方法で結晶成長が報告されている. これらの結晶成長では、β-Ga₂O₃ 基板やサファイア基板、GaN 基板上への成長が報告されているが、ミスト CVD 法では (111) MgO, (111) YSZ, (111) GGG といった立方晶構造の基板上への成長が報告されている[5,6].

本研究では、ミスト CVD を用いて (111) 3C-SiC/Si テンプレート上基板へ ε-Ga₂O₃ 薄膜をヘテロ エピタキシャル成長した結果について報告する. 前駆体溶液は溶質に Ga(acac)₃、溶媒に超純水を 用い、濃度 0.05 M で作製した. Fig. 1 に成長温度 435 °C で 60 分間成長させた ε-Ga₂O₃ 薄膜の XRD-20/ω 測定の結果を示す. ε-Ga₂O₃ の (0002), (0004), (0006), (0008), (00010) 回折のピーク が明瞭に確認された. この薄膜について (0004) 回折に対するロッキングカーブ測定を行った結 果、半値幅は 0.387 °であった. ε-Ga₂O₃ 薄膜と (111) 3C-SiC テンプレートの面内配向関係を調べ

るために, XRD Φ スキャンを行った結果, (10-14) ϵ -Ga₂O₃から 6 回対称のピークが観測された(Fig. 2). また, (200) 3C-SiC からの高強度な 3 回対称のピー クと double positioning boundary に起因する 60 °シ フトした 3 つの対称のピークが観察され, (10-14) ϵ -Ga₂O₃の 6 つの対称ピークは (200) 3C-SiC のピー クと同じ位置に対応した. これらの結果から, 面内 および面外の配向関係は, (0001) ϵ -Ga₂O₃ [10-10] // (111) 3C-SiC [-1-12] であると考えられる. 比較的低 温の 300 °C で成長した薄膜でも ϵ -Ga₂O₃ 単相の薄 膜が成長できており, 当日は結晶構造の成長温度依 存性についても報告する予定である.

謝辞 本研究は, JSPS 科研費 JP16K06326, JP17K14673, JP17K06472 の支援を受けて行われたものです.また、ミスト CVD 成長についてご助言いただいた京都大学の藤田 静雄教授,金子 健太郎博士, 3C-SiC エピウェハをご提供いただいたエア・ウォーター株式会社の北原 功一氏に深く感謝いたします.

References

F.Mezzadri, et al., Inorg. Chem. 55, 12079 (2016).
M.B.Macchioni, et al., Appl. Phys. Express 9, 041102 (2016).

- [3] Y.Ohima, et al. Jpn. J. Appl. Phys. 118, 085301 (2015)
- [4] F.Boschi et al., J. Cryst. Growth 443, 25 (2016).
- [5] H.Nishinaka, et al., Jpn. J. Appl. Phys. 55, 1202BC (2016).
- [6] D.Tahara et al., Proc. 2017 IEEE IMFEDK, 7998036.

Fig. 1. XRD $2\theta/\omega$ scan profile of Ga₂O₃ thin film grown at 435 °C.

Fig. 2. XRD Φ scan profiles of Ga₂O₃ thin film grown at 435 °C.