4H-SiC Trench MOSFETs による短チャネル効果の抑制効果 Suppression of Short-Channel Effects in 4H-SiC Trench MOSFETs °(M1)石井 友康¹, 黒木 伸一郎¹, 瀬崎 洋², 石川 誠治², 前田 智徳², 牧野 高紘³, 大島 武³, Mikael Östling⁴, Carl-Mikael Zetterling⁴ ¹広島大学ナノデバイス・バイオ融合科学研究所,²フェニテックセミコンダクター株式会社, ³量子科学技術研究開発機構(QST), ⁴KTH Royal Institute of Technology

°Tomoyasu Ishii¹, Shin-Ichiro Kuroki¹, Seiji Ishikawa², Tomonori Maeda², Hiroshi Sezaki²,

Takahiro Makino³, Takeshi Ohshima³, Mikael Östling⁴, Carl-Mikael Zetterling⁴

¹Hiroshima Univ., Research Inst. of Nanodevice and Bio Systems, ²Phenitec Semiconductor Co.,Ltd.,

³National Institutes for Quantum and Radiological Science and Technology (QST),

⁴KTH Royal Institute of Technology

E-mail: {tomoyasu-ishii, skuroki}@hiroshima-u.ac.jp

【はじめに】 高温・高放射線環境下で動作する半導体材料として、Si よりも耐性の高い 4H-SiC が注目されている。 本研究グループでは、4H-SiC によるプレーナ型 MOSFET を作製し高温・高放射線曝露後での動作を確認した[1]。し かしプレーナ型は、セルフアライメントプロセスが適用できないため寄生容量が大きく高周波動作ができない。そこ で、本研究グループではトレンチ構造を用いて疑似セルフアライメントプロセスを実現し容量の削減を行った[2]。本 研究では、短チャネル化を進めることで更に高周波駆動可能な MOSFET を目指す。また、トレンチ構造は短チャネル 効果が抑制できると考えられるため、チャネル長を変化させたプレーナ型とトレンチ型の MOSFET を作製し比較して 評価を行った。

【デバイス作製方法】 P型4H-SiC エピタキシャル基板にハードマスクを形成し、ソース・ドレイン領域に As イオン を 500℃で高温イオン注入した。ハードマスク除去後、カーボンキャップを形成し、1800℃にて不純物活性化を行った。 カーボンキャップを酸素プラズマで除去後、LPCVD で SiO2 膜を堆積した。RIE により、プレーナ型は SiO2 膜を、ト レンチ型は SiO2 膜と SiC 基板をエッチングした。その後ドライ酸化(1150℃)でゲート絶縁膜を 20 nm 成長させた。 ソース・ドレイン領域にコンタクトホールを形成し、Ni と Nb をそれぞれ 50 nm 成膜し、950℃窒素雰囲気でシリサイ ド化を行った。これにより SiC へのオーミックコンタクトを形成し、最後に Al 電極を堆積させた。

【測定結果】 Fig.1 に作製した MOSFETs の構造図を示す。同一基板上に従来型のダミーゲートプロセスを用いたプレーナ型 MOSFETs とトレンチ構造による疑似セルフアライメントプロセスによる MOSFETs を作製した。最小のチャネル長は1 µm である。チャネル長 L=5 µm を基準に取った時のトレンチ型とプレーナ型のしきい値電圧の変化を Fig. 2 に示す。プレーナ型では、チャネル長が短くにあるにつれてしきい値電圧の顕著な低下がみられ、閾値電圧の降下は5 µm のデバイスを基準とすると、チャネル長1 µm のデバイスでΔVTH=-2.3V となった。これに対してトレンチ型 MOSFETs においては、同様に5 µm のデバイスを基準とすると、変化幅はΔVTH=0.1 V であり、トレンチ型ではし きい値電圧の低下が確認されない。以上のことから、トレンチ構造 4H-SiC MOSFETs により短チャネル効果が抑制で きていると考えられる。

- S-I. Kuroki, H. Nagatsuma, M. De Silva, S. Ishikawa, T. Maeda, H. Sezaki, T. Kikkawa, T. Makino, T. Ohshima, M. Östling, and C.-M. Zetterling, Mat. Sci. Forum, 858, pp.864-867 (2016).
- [2] T. Kurose, S-I. Kuroki, S. Ishikawa, T. Maeda, H. Sezaki, T. Kikkawa, T. Makino, T. Ohshima, M. Östling, and C.-M. Zetterling, Mat. Sci. Forum, 924, pp. 971-974 (2018).

Fig. 1 Cross-sectional schematic of the planar and trench

4H-SiC MOSFETs fabricated on the same substrate.

4H-SiC planar and trench MOSFETs.