Fabrication of 85(Bi_{0.5}Na_{0.5})TiO₃-15BaTiO₃ green body with (001)-textured hexagonal BaTiO₃ particles using high magnetic field electrophoretic deposition (HM-EPD) Univ. of Yamanashi¹, National Institute for Materials Science² °(D) Minsu Kim¹, Ichiro Fujii¹, Shintaro Ueno¹, Tohru S. Suzuki²,

Tetsuo Uchikoshi², Satoshi Wada^{1,*}

* E-mail: swada@yamanashi.ac.jp

 $85(Bi_{0.5}Na_{0.5})TiO_3$ -15BaTiO₃ (85BNT-15BT) ceramic is representative lead-free piezoelectric ceramic due to its high Curie temperature (~250 °C) and suitability for mass production. To enhance piezoelectric properties, engineered domain structure have been studied which is achieved when crystal is orientated along non-polar direction. 85BNT-15BT ceramic have tetragonal symmetry and non-polar direction is [110] or [111] direction. However, there are very few reports for fabrication of [110] or [111] textured 85BNT-15BT ceramic.

In previous work, our group reported that [111]-textured BaTiO₃ (BT) ceramic was fabricated using electrophoretic deposition under high magnetic field (HM-EPD). However, BT ceramic has low Curie temperature ($T_{\rm C} \sim 130$ °C) and it is difficult to apply in real application. Therefore, we expected that [111]-textured 85BNT-15BT ceramic could be fabricated with HM-EPD method using textured BT particles as orientation seed. Under the magnetic field, particles are orientated along high magnetic susceptibility (χ) direction and the alignment driving force can be expressed as following:

$$\Delta E = \Delta \chi V B^2 / 2\mu_0 \qquad - \text{ Eq. 1}$$

where $\Delta \chi$ is magnetic anisotropy, V is particle volume, B is magnetic field and μ_0 is magnetic permeability in vacuum. According to equation, driving force of magnetic alignment is proportion to magnetic anisotropy ($\Delta \chi$), particle volume (V) and magnetic field (B). Therefore, to fabricate orientation seed, hexagonal BT powder was used because it is known that diamagnetic anisotropy ($\Delta \chi$) is related to crystal anisotropy and hexagonal BT has large crystal anisotropy about c/a ratio = 2.44. For example, it was reported that [001]-textured hexagonal BT green body was fabricated with HM-EPD method under 12 T of magnetic field. In this case, [111]-textured tetragonal BT ceramic was fabricated from [001]-textured hexagonal BT green body during sintering procedure. Therefore, to fabricate [111]-textured BNT-BT ceramic, hexagonal BT powder was used for orientation seed and it was expected that 85BNT-15BT green body was fabricated with HM-EPD method which consisted with [001]-textured hexagonal BT particles.

In this work, to obtain highly oriented green body, 85BNT-15BT green bodies were fabricated with different particle size of hexagonal BT because particle volume (*V*) is important factor according to equation 1. From the results, we obtained green body with randomly orientated BNT particles and [001]-textured BT particles with 83% of Lotgering factor. Detailed experimental results will be provided during presentation