Lattice-plane orientation mapping of 2-inch homo-epitaxial GaN (0001) thin films by grazing incident x-ray diffraction topography

Jaemyung Kim\textsuperscript{1,2}, Okkyun Seo\textsuperscript{1,2,3}, Chulho Song\textsuperscript{2}, Satoshi Hiroi\textsuperscript{3}, Yanna Chen\textsuperscript{2,3}, Yoshihiro Irokawa\textsuperscript{1}, Toshihide Nabatame\textsuperscript{1}, Yasuo Koide\textsuperscript{1}, and Osami Sakata\textsuperscript{1,2,3}

\textsuperscript{1}Center for GaN Characterization, Research Network and Facility Services Division (RNFS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047 Japan

\textsuperscript{2}Synchrotron X-ray Station at SPring-8, RNFS, NIMS, Kouto, Sayo, Hyogo 679-5148 Japan

\textsuperscript{3}Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, NIMS, Kouto, Sayo, Hyogo 679-5148 Japan

Characterization of the lattice-plane orientation of a whole wafer is fundamentally important for improving crystal quality. We propose a method for evaluation of the lattice-plane orientation using grazing incident synchrotron X-ray diffraction topography. The sample was a p-GaN/undoped-GaN/2-inch GaN (0001) wafer. The GaN (11\bar{2}4) diffraction peak and its rocking curve at every point in the wafer were recorded using a two-dimensional area detector in a short amount of time using monochromatic X-rays. In addition, we describe how to reconstruct a [0001] vector with $q_x$, $q_y$, and $q_z$ components based on a Cartesian coordinate system of the physical surface of the sample using a matrix obtained from two equivalent (11\bar{2}4) diffraction topographic images. We were able to obtain the $q_x$, $q_y$, and $q_z$ components of every point of the 2-inch wafer from the images recorded at azimuthal angles of 0 and 120°. The vector analysis indicated that the lattice planes of GaN (11\bar{2}4) were cylindrical rather than spherical. This proposed method could be used to evaluate the orientation mapping of crystal planes that are almost parallel to the sample surface.