導波路・受光素子・CMOS オペアンプを集積した OEIC

OEIC Integrating Waveguide, Photodiode, CMOS Operational Amplifier 広島大学ナノデバイス・バイオ融合科学研究所¹, 大学院先端物質科学研究科² ⁰漆間太一^{1,2}, 田部井哲夫¹, 雨宮嘉照¹, 佐藤旦¹, 山田真司¹, 岡田和志¹, 横山新^{1,2} Res. Int. for Nanodevice and Bio Systems, Hiroshima Univ.¹,

^OT.Uruma¹, T.Tabei¹, Y.Amemiya¹, T.Sato¹, S.Yamada¹, K.Okada¹, S.Yokoyama¹ Email : uruma-taichi@hiroshima-u.ac.jp

<u>1. 研究目的</u>

OEIC は光ニューラルネットや光バイオセンサー などへ応用できることから注目されている。[1,2,3] 光配線は、波長分割多重(WDM)による大規模な 信号分岐のメリットがある。本研究では、エバネッ セント光を用いた光導波路とフォトダイオードの 新しい集積化技術を提案し、光信号を同一 Si 基板 内の CMOS 演算増幅器で増幅することを目指す。

<u>2. デバイス作製と測定</u>

Si 基板上に光導波路とフォトディテクターを集 積化した受光素子(図1)と、光電流増幅用の CMOS オペアンプ(図3)を本研究所のクリーンルームに おいて作製した。[4,5]図2に光分布強度のシミュレ ーション図と光電流の実測値を示す。導波路は幅 10µm、結合長20µm、フォトディテクターの面積は 320µm²に設計した。CMOS は最小加工サイズ5µm でAlゲートを用いた。導波路端面に波長513nmの レーザ光を照射したときに得られる電気信号を CMOS オペアンプを使って増幅した。

<u>3. 結果・考察</u>

受光素子と CMOS オペアンプの非反転接続図を 図 4(a)に、光入力パワーと出力電圧の関係を図 4(b) に示す。V_{DD}=+7V, V_{SS}=-7V, V_{in}=+2.1V, 図 2 のバイア ス電流 *I*=50µA に設定した。光入力 0.5mW の時の 受光素子の光誘起電流は 166nA、CMOS アンプの出 力電圧変化量は 0.17V と実用的な値が得られた。

参考文献

- T. Sakamoto *et al.*, Ext. Abst. Int. Conf. Solid State Devices and Materials (SSDM2017), D-3 (2017).
- [2] W. Burr, Ext. Abst. Int. Conf. Solid State Devices and Materials (SSDM2016), PL-2-01(2016).
- [3] T. Taniguchi et al., Jpn. J. Appl. Phys. 55, 04EM04 (2016).
- [4] M. Steyaert *et al.* IEEE J. Solid-State Circuits, **22**, 1204 (1987).
- [5] T. Uruma *et al.* Ext. Abst. of Int. Workshop on Nanodevice Technologies 2018, Hiroshima, Japan, P-2.

図1. 受光素子の平面図と顕微鏡写真

図 2. (a) 導波路とフォトダイオードの 光分布強度のシミュレーション図および (b)光電流と結合長の関係

図 3. (a)CMOS オペアンプの回路 および(b)顕微鏡写真

