Pt/Co構造における磁気モーメントの電界効果

Electric field effect on magnetic moment in Pt/Co structure 東大工¹^O大日方 綯¹、小山 知弘¹、千葉 大地¹ The Univ. of Tokyo¹ ^oAya Obinata¹, Tomohiro Koyama¹, Daichi Chiba¹

E-mail : aobinata@cblb.t.u-tokyo.ac.jp

Electric field control of magnetism in ferromagnetic metals have been intensively studied. Although a modulation of magnetic anisotropy has been mainly focused so far, the electric-field-induced change in Curie temperature $T_{\rm C}$ and magnetic moment *m* as well provides an useful information to comprehend the physics behind the effect [1,2]. An application of electric field is expected to cause a shift of Fermi level and a modulation of orbital hybridizations [1]. Thus, a careful tracing of an electric field dependence of *m* leads to deeper understanding of how the electronic structure is modulated by an electric field application. In this talk, we report the electric field dependence of *m* in a perpendicularly-magnetized Pt/Co structure using a high-precision magnetization measurement.

Ta (2.5 nm)/Pt (2.4)/Co (0.24)/MgO (2.4) layers were deposited from the bottom side on a Si/SiO₂ substrate using rf sputtering. Subsequently, 50-nm-thick HfO₂ was formed on the sample at 150 °C using an atomic layer deposition. Finally, Cr (2)/Au (12) layers were deposited on top as a gate electrode. The perpendicular component of m (m_{\perp}) was measured using SQUID magnetometer under applying gate voltages $V_{\rm GS}$. Fig. 1 shows the change of the areal m_{\perp} ($\Delta m_{\perp}/S$) as a function of $V_{\rm G}$. To enhance the precision, m_{\perp} measurement was carried out for 72 times and averaged to plot one data point. The result shows that m_{\perp} increased (decreased) when the positive (negative) $V_{\rm G}$ was applied, *i.e.* the electron density at the

Fig. 1 : The V_G dependence of $\Delta m_{\perp}/S$ at 10 K. Δm_{\perp} corresponds to $m_{\perp}(V_G) - m_{\perp}(0 \text{ V})$, where $m_{\perp}(0 \text{ V})/S = 0.37 \text{ mA}$.

Co surface increased (decreased). The modulation efficiency of m_{\perp} , which can be determined from the slope of the $\Delta m_{\perp}/S$ - $V_{\rm G}$ characteristics, roughly corresponds to 1 $\mu_{\rm B}$ /electron if the Co layer is an fcc structure.

This work is partly supported by JSPS KAKENHI and Spintronics Research Network of Japan.

[1] M. Oba et al., Phys. Rev. Lett. 114, 107202 (2015).

[2] F. Ando et al., Appl. Phys. Express 11, 073002 (2018).