Electrical characteristics of ferroelectric undoped HfO₂ directly deposited on Si(100) utilizing Kr/O₂ sputtering Tokyo Institute of Technology¹, °Min Gee Kim¹ and Shun-ichiro Ohmi¹

E-mail: kim.m.ak@m.titech.ac.jp, ohmi@ee.e.titech.ac.jp.

1. Introduction

In order to realize ferroelectric field-effect transistors (FeFETs), the growth of metastable orthorhombic HfO_2 on Si substrates is necessary.

Utilizing Ar/O_2 sputtering, we obtained the memory window (MW) of 0.84 V from the C-V characteristics for the undoped HfO₂ directly deposited on p-Si(100) [1,2]. However, there was a stretch in the C-V curves at accumulation region, which indicated the existence of interface traps between HfO₂ and Si.

In this research, the ferroelectric properties of undoped HfO_2 directly deposited on Si substrates utilizing Kr/O₂ sputtering were investigated.

2. Experimental Procedure

The p-Si(100) substrates (10-30 Ω cm) were cleaned by SPM (H₂SO₄:H₂O₂ = 4:1) and DHF (HF:H₂O = 1:100) followed by the ultra-pure water rinse. Then, HfO₂ films were deposited by RF magnetron sputtering at room temperature with the sputtering power of 100 W. The Ar/O₂[1] and Kr/O₂ flow ratio were 2.0/0.2 sccm and 1.0/0.2 sccm, respectively. The thickness was 20 nm and the gas pressure was 0.35 Pa. Then, post deposition annealing was carried out at 600 °C for 30 s in N₂ ambient. Finally, Al electrode was evaporated. The fabricated MFS diodes were evaluated by C-V and J-V.

3. Results and Discussion

C-V characteristics of Al/HfO₂/p-Si(100) utilizing Ar/O₂ sputtering and Kr/O₂ sputtering were shown in Fig. 1(a). We found that the stretch in the C-V curves measured at 100 kHz was decreased by the Kr/O₂ sputtering. The MW was increased from 0.5 V for Ar/O₂ sputtering to 0.7 V for Kr/O₂ sputtering, which indicates that ferroelectric properties were improved by Kr/O₂ sputtering. The leakage current for the diodes was on the order of 10⁻⁸ A/cm² at V_G = -5 V, while it increased to 10⁻⁶ A/cm² at V_G = +5 V as shown in Fig. 1(b).

4. Conclusions

We investigated the ferroelectric undoped HfO_2 directly deposited on Si(100). It was found that Kr/O_2 sputtering improved the electrical characteristics of ferroelectric undoped HfO_2 .

Acknowledgements

The authors would like to thank Prof. H. Funakubo for his useful discussion. This research is partially supported by the Cooperative Research Project of Research Center for Biomedical Engineering, Ministry of Education, Culture, Sports, Science and Technology.

References

[1] M. G. Kim et al., The 65^{th} JSAP Spring Meeting, p. 05-175 (2018).

[2] M. G. Kim et al., IFAAP, 29pm-p011A (2018).

Figure 1 Comparison of (a) C-V and (b) J-V characteristics of $Al/HfO_2/Si(100)$ diodes.