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In recent years, antimony-based I1I-V semiconductor
materials have attracted growing interests in the
development of optoelectronics devices because the band
gap is tunable to a 1.55 um optical transmission system.
Previously, we reported the spin relaxation of GaSb/AISb
multiple quantum wells (MQWs) with 48-nm-wide wells
at 10-100 K. In this paper, we report the spin relaxation in
two GaSb/AISb MQWs at wider range of temperature,
between 10 and 200 K, observed by time-resolved pump
and probe reflection measurements [1].

The samples were grown on GaAs substrate by
molecular beam epitaxy. Sample A has 25 periods of 48
nm thick GaSb quantum wells, and sample B has 10
periods of 13.4-nm-thick quantum wells.

A Ti-sapphire laser with an optical parametric
oscillator was used as the optical source for a pump and
probe measurements. To suppress the low-frequency
optical noise, an electro-optic modulator was used with
lock-in amplifier to induce 1.9 MHz optical intensity
modulation into the pump beam. The excitation
wavelength was adjusted between 1.48-1.53 um at
10-200 K.

The time evolution of spin-dependent reflection
intensity of sample A for the excitation power of 30 mW
at 10 K is shown in Fig. 1. I" (I') corresponds to a right
circularly polarized excitation with a right (left) circularly
polarized probe. The abrupt signal changes at +12 ps are
due to the reflection at the back side of the substrate [2].
The inset of Fig. 1 shows the time transition of spin
polarization, obtained by (I* —I7)/(I* + 7). The spin
relaxation time g, which is twice the relaxation time of
the spin polarization, of sample A is obtained to be 164
ps at 10 K using a single exponential fitting. The spin
relaxation can be assigned to electron spin relaxation.

Figure 2 shows the temperatures dependences of the
spin relaxation time of sample A (quantum confinement
energy: E;.=3 meV), sample B (E;.= 28 meV) and
InGaAs/InP MQWs (E;.= 60 meV) which has the
bandgap energy of 1.5 um we measured before.

At higher temperature (77-200 K) in sample A, the
spin relaxation time decreases depending on the
temperature according to T~297  which is stronger
negative temperature dependence than that in sample B
(T7118) and InGaAs/InP MQWSs (T~%67). This result
explained by D’yakonov-Perel (DP) process through the
thickness of the quantum well (QW) [3-5]. In bulk

material and QW with lower E;, than Boltzmann energy
kpT, the spin relaxation time scales as 7,'T™> (,:
momentum relaxation time). In QW with higher E;.(>
kgT ), the spin relaxation time is proportional to
7, T~E7/2. This difference of the two dependences due
to DP process may contribute to the results.
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Fig.1 Time evolutions of spin-dependent reflection
intensity for excitation power of 30 mW at 10 K in
sample A. The inset shows the time evolutions of spin
polarization.
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Fig. 2 Temperature dependences of the spin
relaxation time for sample A (circle dots), sample B
(square dots) and InGaAs/InP MQWs (triangle dots)
at 30 mw.
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