異なる半導体性純度のカーボンナノチューブシートの熱電特性

Thermoelectric Properties of SWNT Sheets with Different Semiconducting SWNT Ratio 九大院工¹, WPI-I²CNER², 九大 IMS³, JST-さきがけ⁴ ^O(D) 黄 文シン¹, 藤ヶ谷 剛彦^{1,2,3,4} Kyushu Univ.¹, WPI-I²CNER², IMS³, JST-PRESTO⁴ °(D) Wenxin Huang¹, Tsuyohiko Fujigaya^{1,2,3,4} E-mail: huang.wenxin.619@s.kyushu-u.ac.jp

<u>Abstract</u> Figure of merit (*ZT*) values of semiconducting (s-), metallic (m-) and their mixture of single-walled carbon nanotube (SWNT) together with unsorted SWNT were evaluated by measuring their electrical conductivity (σ), Seebeck coefficient (*S*) and thermal conductivity (κ).

Introduction SWNTs have attracted strong attentions as thermoelectric (TE) material due to their extremely high electrical conductivity (σ), light weight, mechanical toughness and flexibility. Especially, s-SWNT sheet is proved to have large *S* theoretically and experimentally [1, 2]. However, the improvement of *ZT* value by separating s-SWNT from the as-produced SWNT mixture is still uncertain. In this study, we characterized the TE properties of s-SWNT sheets with different s-SWNT ratio and compared their *ZT* values with that of the unsorted SWNT sheet.

Experiment s-SWNTs 2.4 mg (98% Nanointegris) and m-SWNT 0.6 mg (98% Nanointegris) were added to 0.5% SDBS solution and dispersed by bath sonicator (BRANSON, 1 hr) and probe sonicator (TOMY UD-200). The dispersion were filtrated and the free-standing s-:m-SWNT=4:1 sheet was obtained (80% s-SWNT). 98% s-SWNT sheet, s:m-SWNT=2:1 sheet (67% s-SWNT), s:m-SWNT=1:2 sheet (33% s-SWNT), and 2% s-SWNT sheets were made in the same fashion. In-plane σ and *S* of the sheets were measured by ZEM-3 (ADVANCE RIKO) from 30 to 100 °C. The specific heat capacity (C_p) was measured by differential scanning calorimetry (DSC) method using EXSTAR DSC 6200 (SII Nanotechnology) at the heating rate of 10 K min⁻¹. In-plane thermal diffusivity (α) were evaluated using a Thermowave Analyzer TA (Bethel Co., Ltd.,). Density (ρ) was calculated from the weight and volume of the sheets.

<u>Results and discussion</u> Table 1 summarized the in plane σ , *S*, power factor (*PF*), κ and *ZT* of the unsorted SWNT, 2%, 33%, 67%, 80% and 98% s-SWNT sheets at 30 °C. Unsorted SWNT sheet exhibited nearly 1.7 times higher σ than the 2% s-SWNT sheet. This was due to the defects induced during the separation process of the m-SWNTs, which was confirmed by the larger D band of m-SWNTs than that of unsorted SWNT in Raman spectra (data not shown). As s-SWNT ratio increased, *S* increased leading to higher *PF*, which was the same as previous report [3]. No significant difference was observed in the average κ values as the s-SWNT ratio increased, which was in accordance with the literature [4,5]. Mixed SWNT sheets showed lower κ than unsorted SWNT probably due to the higher defect of m- and s-SWNTs [6]. In conclusion, as s-SWNT ratio increased, *PF* increased while κ stayed the same, leading to an increasing *ZT*. The result was practically quite informative when considering the advantage of the s-SWNTs for TE applications.

fuble 1. 12 properties of various 5 with sheet				(values inside the () is the error bar)		
	Unsorted	2%	33%	67%	80%	98%
	SWNT	s-SWNT	s-SWNT	s-SWNT	s-SWNT	s-SWNT
σ (S m ⁻¹)	5.03×10 ⁴	2.89×10 ⁴	1.54×10^{4}	2.12×10^{4}	1.24×10^{4}	1.04×10^{4}
S (μV K ⁻¹)	35.0	11.9	26.1	47.9	58.6	76.0
$PF (\mu W m^{-1} K^{-2})$	61.62	4.090	10.47	48.49	42.64	60.28
$\kappa ({ m W}{ m m}^{-1}{ m K}^{-1})$	17.90 (1.88)	9.16 (0.95)	9.34 (0.98)	10.16 (2.17)	11.41 (2.14)	9.57 (0.63)
ZT	1.04 (0.12) ×10 ⁻³	1.36 (0.16) ×10 ⁻⁴	3.40 (0.39) ×10 ⁻⁴	1.45 (0.34) ×10 ⁻³	1.13 (0.27) ×10 ⁻³	1.91 (0.18) ×10 ⁻³

 Table 1. TE properties of various SWNT sheet
 (Values inside the () is the error bar)

[1] Ferguson, A. J. et al, *Nature Energy*, **1**, 16033 (2016) [2] Maniwa, Y. et al, *Appl. Phys. Express*, **7**, 025103 (2014) [3] Kim, G. et al, *J. Phys. Chem. C*, **118** (**46**), 26454 (2014) [4] Lian, F. et al, *Appl. Phys. Lett.*, **108**, 103101 (2016) [5] Yamamoto, T. et al, *Phys. Rev. Lett.*, **92** 075502 (2004) [6] Yamamoto, T. et al, *e-J. Surf. Sci. Nanotech.*, **4**, 239 (2006)