Formation of miniature polymeric surface plasmon sensor chip using confined sessile drop technique.
Niigata Univ.1, Chulalongkorn Univ.2, Chiang Mai Univ.3, Supeera Nootchanat1
Wisansaya Jaikaeandee1,2, Patrawadee Yaiwong1,3, Chutiparn Lertvachirapaiboon3
Kazunari Shinbo1, Keizo Kato1, Sanong Ekgasit2 and Akira Baba1*
E-mail: ababa@eng.niigata-u.ac.jp

In this work, we present a versatile method to fabricate a miniature surface plasmon resonance (SPR) sensor chip using confined sessile drop technique. The liquid photopolymer (NOA 61) was dropped on a circular polydimethylsiloxane (PDMS) substrate. Under equilibrium contention, hemispherical droplets were formed due to liquid spreading resistance at the edge of the substrate defined by Gibbs inequality equation [1]. After UV curing, the hemispherical optical prism was obtained. Miniature SPR sensor chips with Kretschmann configuration could be achieved by the deposition of a gold film with the thickness of 50 nm on the flat surface of the obtained prism [2]. The fabricated miniature SPR sensor chip was then mounted on a 3D-printed flow cell to complete the sensor module.

Figure 1 Digital photographs of (A) a sessile droplets of liquid polymer and (B) surface plasmon sensor chips attached to a 3D-printed flow cell. (C) Surface plasmon reflection spectra of water/ethylene glycol solution.

References