Performance enhancement of mesoporous TiO₂-based perovskite solar cells by SbI₃ interfacial modification layer

Putao Zhang, Fu Yang, Muhammad Akmal Kamarudin, Chi Huey Ng, Gaurav Kapil, Tingli Ma, Shuzi Hayase* *E-mail: hayase@life.kyutech.ac.jp

Abstract: TiO_2 is commonly used as electron transporting materials in perovskite photovoltaic devices due to its advantages, including suitable band gap, good photoelectrochemical stability and simple preparation process. However, there are many oxygen vacancies or defects on the surface of TiO_2 and thus this affect the stability of TiO_2 based perovskite solar cells under UV light. In this work, a thin (monolayer) SbI₃ modification layer is introduced on mesoporous TiO_2 surface and the effect at the interface between of TiO_2 and perovskite is monitored by using quartz crystal microbalance system. We demonstrate that the SbI₃modified TiO_2 electrodes exhibit superior electronic properties by reducing electronic trap states, enabling faster electron transport. This approach results in higher performances compared with that without SbI₃ passivation layer electrodes. CH₃NH₃PbI₃ perovskite solar cells with a maximum power conversion efficiency of 17.33% in air, accompanied by a reduction in hysteresis and enhancement of the device stability are reported.