Formation of nanocrystalline silicon on insulator through aluminothermic reduction of silica-substrates

筑波大学<sup>1</sup>,茨城工業高等専門学校<sup>2</sup>,<sup>O</sup> Muhammad Monirul Islam<sup>1</sup>,澤畠 淳二<sup>2</sup>,秋本 克洋<sup>1</sup>,

## 櫻井 岳暁1

Tsukuba Univ.<sup>1</sup>, National Institute of Technology, Ibaraki College<sup>2</sup>, <sup>o</sup> Muhammad Monirul Islam<sup>1</sup>, Junji Sawahata<sup>2</sup>, Katsuhiro Akimoto<sup>1</sup>, and Takeaki Sakurai<sup>1</sup>

E-mail: islam.monir.ke@u.tsukuba.ac.jp

**Introduction:** Silicon (Si) is the most abundant semiconductor-material found in form of silica (SiO<sub>2</sub>) contributing in the fields of macro to microelectronics. In particular, nanocrystalline Si (nc-Si) is promising for future optoelectronics, as it shows material properties of both amorphous-Si and polycrystalline-Si. Current methods of obtaining nc-Si involve re-crystallization of amorphous-Si, or direct deposition of nc-Si through chemical vapor deposition (CVD). Various complex-steps, requirement of high-temperature, toxic materials in the current techniques limit its potential applications. In this study, we have focused on a simple method for the formation nc-Si films on insulator-type substrates (i.e., silica: glass or quartz *etc*) through aluminothermic reduction of the substrates. According to thermodynamic properties of SiO<sub>2</sub>, aluminothermic reduction occurs around melting point of aluminum (Al), (~  $650^{\circ}$  C) following the basic equations:

SiO<sub>2</sub> (Solid) + 4e<sup>-</sup> 
$$\rightarrow$$
 Si (reduced) + 2O<sup>2-</sup> (1)  
Al (s)  $\rightarrow$ Al<sup>+3</sup> + 3e<sup>-</sup> (2)  
3SiO<sub>2</sub>(S) + 4Al (S) = 3Si (s) + 2Al<sub>2</sub>O<sub>3</sub>(s) (3)

**Experimental:** Al thin-films with thickness of ~ 100 nm were deposited through thermal evaporation of Al on quartz or borosilicate glass-substrates. Then, Al/quartz (or glass) structure was transferred to a thermal annealing system, where it was annealed at  $700^{\circ}$  C in the vacuum; thereby, going through aluminothermic reduction, where surface of the silica-substrate reduced to become Si-film. Si-films were characterized by Raman spectroscopy, photoluminescence, scanning electron microscopy (SEM), and optical measurement *etc*.

**Results and Discussions:** 



Fig.1 (a) Raman spectra of aluminothermic reduced Si-film on quartz-substrate; (b) Band-gap determination from data obtained by UV-visible measurement

**Results and Discussions:** Shown in Fig. 1(a) are the Raman spectra of Si thin-films obtained through aluminothermic reduction of a borosilicate glass and a quartz-substrates, performed at 700<sup>o</sup> C with 1-hour of reaction time (annealing). Raman spectrum of the oriented single-crystal Si-wafer has been shown as a reference. A broadened asymmetric peak at ~514 cm<sup>-1</sup> has been apparent for Si-films on both the glass and the quartz-substrate. A large shift of peak at 514 cm<sup>-1</sup> comparing to the peak of Si-wafer at ~ 520 cm<sup>-1</sup> roughly suggests formation of nc-Si through aluminothermic reduction of the surface of SiO<sub>2</sub>-substrates. Optical bandgap ( $E_g$ ), of the nc-Si films obtained by absorption measurement was found around 2.5 eV (Fig. 1 (b)), which is characteristic for the nc-Si thin-films. Annealing time was varied during reduction to study the effect of reaction time on the quality of the nc-Si films. Optical and structural properties were discussed in relation to the various annealing time.