Lateral etching of HfN_{0.5} narrow line utilizing diluted HF solution

Tokyo Institute of Technology¹, ° Yizhe Ding¹, Rengie Mark D. Mailig¹,

Sohya Kudoh¹ and Shun-ichiro Ohmi¹

E-mail: ding.y.ab@m.titech.ac.jp, ohmi@ee.e.titech.ac.jp

1. Introduction

The so-called high- κ gate dielectrics are regarded as the most promising candidates to overcome the limitations of transistor scaling [1], such as equivalent-oxide-thickness (EOT) and gate length (L_g) scaling. We have reported that 0.5 nm EOT utilizing bilayer HfN_x gate insulators with in-situ formed HfN_{0.5} gate electrode [2]. In this paper, the lateral etching of HfN_{0.5} gate electrode utilizing diluted HF (DHF) solution was investigated.

2. Experimental Procedures

The p-Si (100) substrates were cleaned using SPM and DHF followed by the ultra-pure water rinse. Then, the 18-nm-thick HfN_{0.5} film was deposited utilizing ECR plasma sputtering at room temperature (RT) with Ar/N₂ gas flow ratio of 10/0.2 sccm, microwave power of 500 W and RF power of 400 W. After that, 4 μ m line-and-space (L/S) was patterned, followed by the DHF (HF:H₂O = 1:100) wet etching for 0 to 195 s. Finally, the lateral etching rate was evaluated by optical microscopy.

3. Results and Discussion

Figure 1 shows the top-view of 4 μ m L/S after etching and removal of photoresist (PR). The18nm-thick HfN_{0.5} film could be completely etched in vertical direction by 20 s etching. Lateral etched length and etched line width dependent on the etching duration was extracted from L/S patterns as shown in Fig. 2. The variation of line width was approximately 150 nm after 195 s etching. The lateral etching rate was 1.1 μ m/min which is corresponding to the slope of the plots in Fig. 2. The lateral etching seemed to be initiated with the incubation time below 120 s as shown in Fig. 2.

4. Conclusion

The lateral etching of $HfN_{0.5}$ film was investigated utilizing DHF. As a conclusion, the precise control of lateral etching for $HfN_{0.5}$ gate electrode was realized which would be suitable for narrow gate formation.

5. Acknowledgement

This research is partially supported by Cooperative Research Project of Research Center for Biomedical Engineering, Ministry of Education, Culture, Sports, Science and Technology.

6. References

[1] J. Robertson *et al.*, Mat. Sci. Eng. R., **88**, pp. 1-41 (2015).

[2] N. Atthi *et al.*, IEICE Electron. Exp. **13**, 20160054 (2016).

Figure 1 Top views of HfN_{0.5} narrow line after (a) 20 s, (b) 120 s, (c) 180 s, and (d) 195 s etching.

Figure 2 Lateral etching length of HfN_{0.5} film.