Effect of Conduction Band Offset on Breakdown Voltage at SiO₂/4H-SiC (000-1) studied by Hard X-ray Photoelectron Spectroscopy

Efi Dwi Indari^{1,2}, Yoshiyuki Yamashita^{1,2}, Takahiro Nagata¹, Shigenori Ueda^{1,3}, Ryu Hasunuma⁴, Kikuo Yamabe⁴ National Institute for Materials Science (NIMS)¹, Kyushu Univ², NIMS/SPring-8³, Univ of Tsukuba⁴ E-mail: INDARI. EfiDwi@nims.go.jp

SiC has attracted a great interest in the application of high power devices due to its wide band gap and the easiness of oxide layer formation, that is SiO₂, by thermal oxidation procedure. ^{1,2} However, the high-density interface states and small conduction band offset of SiO₂/SiC-based electronic devices still hamper the device performances.^{3,4} In this study, we investigated the effect of conduction band offset (ΔE_c) on the breakdown voltage upon SiO₂/4H-SiC (000-1) using hard x-ray photoelectron spectroscopy (HAXPES).

We used 4H-SiC (000-1) substrate cleaned by standard RCA method to employ following thermal oxidation methods:1) wet oxidation, 2) wet oxidation followed by oxygen annealing, and 3) dry oxidation. Each oxidation was followed by Ar annealing. The oxide layers were etched with a diluted HF to obtain thicknesses of around 8 nm. HAXPES measurements were carried out at BL15XU beamline at SPring-8 with incident photon energy was 5.9 keV and energy resolution was set to be 240 meV.

The valence band offset (ΔE_v) was experimentally determined from the difference between VBM_{SiO2} and VBM_{SiC}. ΔE_c is determined from this relationship: $\Delta E_c = E_g^{SiO_2} - E_g^{SiC} - \Delta E_v$. $E_g^{SiO_2}$ were experimentally estimated from O 1s energy loss spectra while E_g^{SiC} was set to be 3.26 eV.⁴ The breakdown voltage increases with the larger ΔE_c . SiO₂/4H-SiC (000-1) prepared by dry oxidation procedure exhibits highest ΔE_c , while wet oxidation procedure exhibits the lowest ΔE_c . Oxygen annealing performed after wet oxidation was effective for an increase of ΔE_c , which yields higher breakdown voltage.

Keywords: breakdown voltage, conduction band offset, SiO₂/4H-SiC (000-1), thermal oxidation

Fig. 1 (a) VBM_{SiO2} (b) valence band leading edge of SiC and VBM_{SiC} of SiO₂/4H-SiC (000-1) structure prepared by wet oxidation. Black lines depict the linear fitting to estimate both VBM_{SiO2} and valence band leading edge of SiC while red curve depicts combination of parabolic and exponential fitting of $a(x-b)^2(exp(c(x-b)/9.7))$ to estimate VBM_{SiC}, where b and 9.7⁵ represents the value of VBM_{SiC} (in eV) and electron mean free path (in nm) of SiC respectively. (c) Band offset of three different oxidation procedures. The energy origin is VBM_{SiO2} of SiO₂/4H-SiC (000-1).

Reference

¹ J. Tan, M.K. Das, J.A. Cooper, and M.R. Melloch, Appl. Phys. Lett. **70**, 2280 (1997).

- ² H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
- ³ J.N. Shenoy, G.L. Chindalore, M. Melloch, J.A.J. Cooper, J.W. Palmour, and K.G. Irvine, J. Electron. Mater. 24, 303 (1995).
- ⁴ V. V. Afanas'ev, M. Bassler, G. Pensl, M.J. Schulz, and E. Stein von Kamienski, J. Appl. Phys. 79, 3108 (1996).

⁵ S. Tanuma and C.J. Powell, Surf. Interface Anal. 21, 165 (1993).