# ゲルマニウムの高圧熱酸化機構に関する研究

Thermal oxidation kinetics of Ge under high O<sub>2</sub> pressure 東大院工 王旭、西村知紀、矢嶋 赳彬、鳥海 明 Univ. of Tokyo, Xu Wang, Tomonori Nishimura, Takeaki Yajima, and Akira Toriumi

E-mail: xuwang@adam.t.u-tokyo.ac.jp

## 1. Introduction

The control of the thermal oxidation is one of the most important processes in semiconductor device fabrication. Si oxidation is well described by the Deal-Grove model [1]. However, Ge oxidation kinetics has been proved to be different from Si experimentally [2, 3]. We have proposed a possible kinetic model based on oxygen vacancy ( $V_0$ ) to describe relatively thick Ge oxidation at atmospheric pressure [3]. It is however, not clear in terms of anomalous oxidation rate under high *p*-O<sub>2</sub> [4].

In this paper, <sup>18</sup>O<sub>2</sub> tracer is used to study Ge oxidation under high p-O<sub>2</sub> for the first time. Both oxygen vacancy and atomic O interstitial (O<sub>i</sub>) diffusion are considered in Ge oxidation under high p-O<sub>2</sub>.

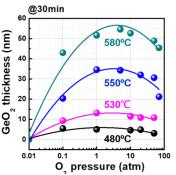
### 2. Experiment

P-type Ge(100) wafers were thermally oxidized in wide ranges of temperatures (T) and p-O<sub>2</sub>. The GeO<sub>2</sub> thickness was determined by the grazing incidence X-ray reflectivity (GIXR) measurement.

In isotope tracer experiments, Ge wafer was first oxidized in  ${}^{16}O_2$  at 520°C to form 89-nm-thick GeO<sub>2</sub>. Then, it was re-oxidized in  ${}^{18}O_2$  at 520°C for 50 min, and the total oxide thickness was 93 nm. *p*-O<sub>2</sub> was fixed at 40 atm in both oxidations steps (HPO+HPO). Finally, 30-nm-thick Ge<sup>16</sup>O<sub>2</sub> was deposited on the top by radio-frequency (rf) sputtering to minimize the surface effect in SIMS measurement. The depth profiles were analyzed by the SIMS.

### 3. Results and discussions

**Fig. 1** shows an inverse p-O<sub>2</sub> dependence of the Ge oxidation rate over atmospheric pressure at all temperatures (oxidation time was fixed at 30 min.), which has never been observed in Si. **Fig. 2** shows the SIMS profiles of sample by HPO+HPO. An accumulation of <sup>18</sup>O at the interface indicates that some diffusion species may directly transport to the interface. Molecular O<sub>2</sub> interstitial and atomic O interstitial (O<sub>i</sub>) are both considered. Since O<sub>2</sub> diffusion in GeO<sub>2</sub> is suggested much limited [5], O<sub>i</sub> is more possible diffusion species in Ge oxidation process in HPO case.


We propose a possible model for the Ge oxidation by considering both V<sub>0</sub> generation at the interface and O<sub>i</sub> diffusion from oxide surface (**Fig. 3**). In APO, V<sub>0</sub> diffusion is dominant with GeO desorption at the oxide surface. However, V<sub>0</sub> formation is considerably suppressed in HPO, which has been clarified by thermodynamic calculation [6]. Thus O<sub>i</sub> diffusion becomes important in HPO, resulting in an <sup>18</sup>O interfacial peak in **Fig. 2**. Considering that O<sub>i</sub> contribution to the total Ge oxidation is limited, it is reasonable that the oxidation rate is lowered in HPO. This model can well explain why HPO is a good method to achieve high performance of GeO<sub>2</sub>/Ge gate stacks [4]. High *p*-O<sub>2</sub> can improve the oxide quality by suppressing the formation of V<sub>0</sub>, meanwhile O<sub>i</sub> diffusion can terminate the interfacial dangling bonds to achieve a high quality Ge/GeO<sub>2</sub> interface.

### 4. Conclusions

The p-O<sub>2</sub> dependence of the Ge oxidation rate is well explained by considering both V<sub>0</sub> and O<sub>i</sub> diffusion. In HPO, V<sub>0</sub> formation is suppressed, and O<sub>i</sub> diffusion passivates dangling bonds at the interface.

### Reference

B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).
S. R. M. da Silva et al., Appl. Phys. Lett., 100, 191907 (2012).
X. Wang, et al., Appl. Phys. Lett., 111, 052101 (2017).
C. H. Lee, et al., Appl. Phys. Express 5, 114001 (2012).
X. Wang, et al., JSAP Meeting, March 2018.
K. Nagashio, etc., Mater. Res. Soc. Symp. Proc., 1155, C06-02. (2009).



**Fig. 1** GeO<sub>2</sub> thickness vs *p*-O<sub>2</sub> in a wide range of temperatures.

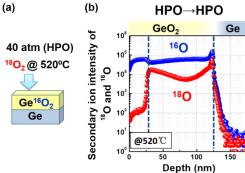
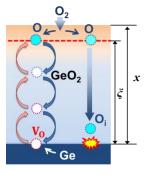




Fig. 2 Schematics of  $Ge^{16}O_2/Ge$  oxidized in  $^{18}O_2$  at 520°C under 40atm (HPO) and SIMS profile of  $GeO_2/Ge$ .



**Fig. 3** Schematic of Ge oxidation model in HPO.