Li FePO4の酸化還元電位の温度係数

Temperature Coefficient of Redox Potential of Li_xFePO₄ 筑波大数物科 ¹, 千葉大先進科学セ ², 筑波大数物系 ³, 筑波大 TREMS⁴ [○]福住 勇矢 ¹, 日沼 洋陽 ², 守友 浩 ^{3,4}

Grad. Sch. Pre and Appl. Sci., Univ. Tsukuba ¹, Cntr. Frontier Sci., Chiba Univ. ²,
Fac. Pre and Appl. Sci., Univ. Tsukuba ³, TREMS, Univ. Tsukuba ⁴,

°Yuya Fukuzumi¹, Yoyo Hinuma², Yutaka Moritomo^{3, 4}

E-mail: s1730094@s.tsukuba.ac.jp

酸化還元電位(V)の温度係数($\alpha = \partial V/\partial T$,ここで T は電極温度)は、新しい電池型の熱電変換で重要とされるパラメータである[I]。例えば柴田らは、プルシャンブルー類似体を電極に用いた電池型熱電変換の熱効率が、30~K の温度変化で 1.0%になることを報告した[I]。

熱力学的な考察によれば、一電子反応における α は酸化体と還元体のエントロピーの差(Δ S) に由来することが期待される ($e\alpha = \Delta S$, ここで e は素電荷)。我々は、リチウムイオン二次電池正極材料の一つである Li_xFePO_4 の α を実験的に決定し、第一原理計算により ΔS を評価した。この酸化還元反応は FePO_4 + Li^+ + e^- \$ LiFePO_4 で表され、反応に中間状態がなく結晶中で二相分離となるため[3]、本研究に適した理想的な系である。

まず、 Li_xFePO_4 の α の値を実験的に決定した。 正極に LiFePO_4 ペースト電極、負極にLi金属、電解液に 1mol/L LiClO_4 炭酸エチレン・炭酸ジェチル混合溶液を使用したセルを用意した。ペルチェ素子で負極の温度は維持しながら正極の温度を297~Kから308~Kまで変化させて電位の変化を記録した。図1~C、x=0.5~Cおいて得られた電位の温度依存性を示す。 α は0.90~mV/Kと求まった。またxを変えた実験でも、 α はxに依存せず一定であることが分かった。 さらに、第一原理計算により FePO₄ と LiFePO₄のエントロピーの差(ΔS)を求めた。 図 2 に、得られた ΔS の温度依存性を示す。300 K で ΔS = 0.30 meV/K であり、これは実験で得られた温度依存性から電解液による効果⁽⁴⁾を 差し引いた値を説明することが分かった。

- [1] C. Gao et al., ACS Energy Lett. 2, 2326-2334 (2017).
- [2] T. Shibata et al., Appl. Phys. Express 11, 017101 (2017).
- [3] C. Delmas et al., Nat. Mater. 7, 665-671 (2008).
- [4] Y. Fukuzumi et al., J. Phys. Soc. Jpn. 87, 055001 (2018).

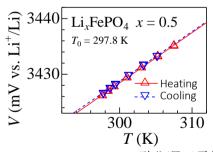


図 1: $\text{Li}_{x}\text{FePO}_{4}$ (x=0.5) の酸化還元電位の 温度依存性

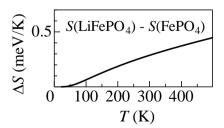


図 2: LiFePO₄ と FePO₄ のエントロピーの差 (AS) の温度依存性