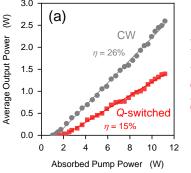
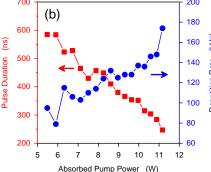
グラフェン可飽和吸収体を用いた 2.8 μ m 帯 Q スイッチ $Er: Lu_2O_3$ セラミックレーザー

Passively Q-switched 2.8 µm Er:Lu₂O₃ ceramic laser with graphene saturable absorber


阪大レーザー研1,核融合研2,三星ダイヤモンド工業(株)3


O上原 日和¹, 時田 茂樹¹, 河仲 準二¹, 小西 大介³, 村上 政直³, 清水 政二³, 安原 亮² E-mail: uehara-h@ile.osaka-u.ac.jp

3 μ m 波長帯中赤外レーザーは、水分に強く吸収されることから、医療や産業分野において極めて有用であり、その高効率・高出力化は急務である。 Lu_2O_3 や Y_2O_3 の透光性セラミックスは、ガラスや YAG 結晶と比較して高い熱伝導度、低フォノンエネルギーを有するため、適したレーザーホスト材料と考えられる。また、セラミックスは単結晶と比較して安価で容易に作製可能であり、高い機械強度や成形性などの利点も有するため、これらを用いた中赤外レーザーの研究が行われている。これまでに著者らは、 Er^{3+} 添加 Lu_2O_3 透光性セラミックスを用いて、高い効率と出力を有する室温での 2.8μ m 帯 cw 発振に成功した[1]。さらなる高ピーク出力化を図るため、本研究では、グラフェンを可飽和吸収体として用いた受動 Q スイッチングによるパルス発振を試みた。グラフェンの可飽和吸収特性は応答が速く、波長無依存であることから、中赤外域での使用に適していると考えられる。

レーザー媒質として、11 at.% Er^{3+} 添加 Lu_2O_3 透光性セラミックスを用いた。2 枚の平面ミラー(OC 透過率 5%) を組み合わせた共振器内に、20Cで水冷した $Er:Lu_2O_3$ と単原子層のグラフェンを挿入し、中心波長 970 nm の LD で励起することで発振特性を評価した。

図 1 (a)に平均出力、(b)に Q スイッチパルス幅と繰り返し 周波数を示す。cw 動作において、現在 $Er:Lu_2O_3$ セラミックレーザーで報告されている最高出力である 2.6 W (11 W 励起時)を得た。グラフェン挿入時、図 2 に示したパルス列が得られ、安定した Q スイッチパルス動作を確認した。10.6 W 励起時、パルス幅 300 ns、

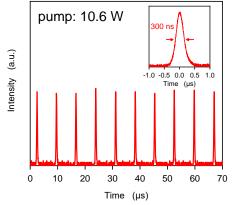


Fig. 1 (a) Average output power as a function of absorbed pump power for cw and Q-switched operation of the Er:Lu₂O₃ ceramic laser. (b) Pulse duration and repetition rate as a function of absorbed pump power.

繰り返し周波数 140kHz、平均出力 1.3~W であった。励起パワーの増加にしたがってパルス幅が短くなり、繰り返し周波数が増加した。パルスエネルギーは最大で $9.4~\mu J$ 、ピーク出力 33~W であり、いずれも現在 $Er:Lu_2O_3$ で報告されている最大値である。本発表では、多層グラフェンを使用した Q スイッチ実験結果についても報告予定である。

Reference

[1] H. Uehara, R. Yasuhara, S. Tokita, J. Kawanaka, M. Murakami, and S. Shimizu, "Efficient continuous wave and quasi-continuous wave operation of a 2.8 μ m Er:Lu₂O₃ ceramic laser," Opt. Express **25**, 18677 (2017).

Fig. 2 Typical output pulse train from the *Q*-switched Er:Lu₂O₃ laser with repetition rate of 140kHz. Inset: Temporal waveform of a pulse in the pulse train.