Temperature dependence of spin signals in an AlGaAs/GaAs-based high-mobility two-dimensional electron system

Zhichao Lin¹, Da Pan², Mahmoud Rasly¹, and Tetsuya Uemura¹

1, Graduate School of Information Science and Technology, Hokkaido University, Japan 2, School of Engineering, Hokkaido University, Japan

1. Introduction

The injection of spin-polarized electrons from ferromagnets into semiconductors has attracted much interest for creating spin transistors. Spin injection into bulk semiconductors such as GaAs [1], Si [2], and Ge [3] has been realized at room temperature. On the other hand, a two-dimensional electron gas (2DEG) structure of AlGaAs/GaAs has attracted much interest for its high electron mobility, and it is used for high electron mobility transistors (HEMTs).

Up to date, however, electrical spin injection into an AlGaAs/GaAs 2DEG channel has been achieved only by using GaMnAs as a spin source [4], and the demonstration of spin injection was limited below 50 K because of the low Curie temperature ($T_{\rm C} < 200$ K) of GaMnAs. In this study, we demonstrated spin injection into an AlGaAs/GaAs 2DEG channel up to 138 K by using CoFe ($T_{\rm C} > 1000$ K) as a spin source.

2. Experimental method

Figure 1(a) shows a layer structure of a spin injection device. Layers consisting of (from the substrate side) ud-GaAs (400 nm)/ud-Al_{0.3}Ga_{0.7}As (100 nm)/n⁻-Al_{0.3}Ga_{0.7}As (Si = 3×10^{18} cm⁻³ and 100 nm)/ud-Al_{0.3}Ga_{0.7}As (15 nm)/ud-GaAs (50 nm)/n⁻-GaAs (Si = 7×10^{16} cm⁻³ and 100 nm)/n⁺-GaAs (Si = 7.5×10^{18} cm⁻³ and 30 nm) were grown by molecular beam epitaxy (MBE) on a GaAs (001) substrate. Then a CoFe layer (5 nm) was grown by magnetron sputtering at room temperature. Using electron-beam lithography and Ar ion milling techniques, a four-terminal nonlocal device was fabricated (Figure 1(b)). The size of the injector and detector were $0.5 \times 5 \ \mu m$ and $1.0 \times 5 \ \mu m$, respectively, and the spacing (*d*) between them was 0.5 μm .

3. Results and Discussion

From the Hall effect measurement, electron mobilities ranging from 24200 to 42700 cm²/V s and sheet carrier concentrations ranging from 6.9×10^{11} to 8.5×10^{11} cm⁻² were obtained at 77 K for the AlGaAs/GaAs 2DEG structure. Such relatively high electron mobilities indicate that the 2DEG channel was well formed at the interface of the AlGaAs/GaAs heterostructure.

Figure 2(a) shows a clear nonlocal spin-valve signal observed at 77 K, a higher temperature than that reported in Ref. 4, which used GaMnAs as a spin source. Furthermore, the temperature dependence of the spin-valve signal was investigated. Figure 2(b) shows $|\Delta V_{\rm NL}/I_{\rm bias}|$ as a function of temperature, where $\Delta V_{\rm NL}$ is the amplitude of a spin-valve signal and $I_{\rm bias}$ is the bias current. The spin-valve signals were observed from 4.2 K to 138 K. Interestingly, the spin-valve signal doesn't show monotonic decrease as increasing temperature and it reaches to a peak at ~80 K. This contrasts with the result observed in bulk GaAs [1], in which monotonic decrease of spin-valve signals with increasing temperature was observed. These results contribute to better understanding of spin transport in a 2DEG channel, which is indispensable for the realization of the future spin transistors which can operate at a relatively high temperature.

Fig. 1(a). 2DEG layer structure of a spin injection device. (b) Device structure and circuit configuration for nonlocal spin-valve measurements.

Fig. 2(a). A nonlocal spin-valve signal at 77 K. (b) Temperature dependence of $|\Delta V_{\rm NL}/I_{\rm bias}|$, where $\Delta V_{\rm NL}$ is the amplitude of a spin-valve signal and $I_{\rm bias}$ is the bias current.

References

- [1] T. Uemura et al., Appl. Phys. Lett. 99, 082108 (2011).
- [2] T. Suzuki *et al.*, APEX **4**, 023003 (2011).
- [3] M. Yamada *et al.*, APEX **10**, 093001 (2017).
- [4] M. Oltscher et al., Phys. Rev. Lett. 113, 236602 (2014).