Evaluation of temperature-dependent spin Hall angle in CoFeB/MgO/Pt tunneling junctions by using Spin Hall effect tunneling spectroscopy

K. Nakagawara¹, S. Kasai², S. Mitani², S. Karube^{1,3}, M. Kohda^{1,3} and J. Nitta^{1,3} ¹Department of Materials Science, Graduate School of Engineering, Tohoku University ² National Institute for Materials Science ³Center for Spintronics Research Network, Tohoku University</sup>

Spin Hall effect (SHE) and its inverse effect (*i*-SHE) are promising ways to generate and to detect spin currents, respectively. The spin Hall angle $\theta_{\rm SH}$ is the conversion efficiency between charge current and spin current. Various methods evaluate θ_{SH} have been to demonstrated, such as spin pumping [1], harmonic measurement [2] and lateral spin Recently, valve [3]. SHE tunneling spectroscopy (SHT) [4] has been proposed as an alternative way to evaluate $\theta_{\rm SH}$. In this method, *i*-SHE signal is obtained via tunneling spin polarized currents, which is applicable for not only metals but also topological insulators [5]. In this study, we explore the detailed spin dependent transport mechanism in spin Hall effect tunneling devices.

Film stack of Ru (8)/Ta (5)/CoFeB (4)/MgO (2)/Pt (7) (thickness in nm) was prepared by magnetron sputtering. The SHT device as shown in Fig. 1 was fabricated by using electron beam lithography and Ar ion milling. CoFeB/MgO junction was patterned into $4 \times 4 \ \mu\text{m}^2$ square - shaped element. The magneto-transport was measured by using AC resistance bridge by varying temperature. To evaluate θ_{SH} , following equation is used [4].

$$\theta_{\rm SH} = \frac{w \cdot t \cdot \Delta R}{P \cdot \rho \cdot \lambda_{\rm sf}} \cdot \frac{1}{\tanh\left(\frac{t}{2\lambda_{\rm sf}}\right)} \quad \cdots (*)$$

Here ρ and λ_{sf} are the resistivity of Pt and spin relaxation length of Pt, respectively, *P* and ΔR indicate spin polarization of CoFeB and the amplitude of SHT signal. *w* and *t* are width of the bottom electrode and Pt thickness (*w*=8µm, *t*=7nm in this case).

To evaluate λ_{sf} , weak-anti localization was measured as shown Fig.2. As a result, λ_{sf} of Pt is determined to be 5 nm at 1.6K. To evaluate λ_{sf} at high temperature, further experiment is going on. Temperature-dependence of inverse spin Hall signal ΔR is also evaluated at various temperatures as shown in Fig.3.

To evaluate $\theta_{\rm SH}$ precisely, further analysis is underway.

[1] E. Saitoh et al., Appl. Phys. Lett. 88, 182509 (2006). [2]

L. Liu *et al.*, Science 336, 555 (2012). [3] V. Laurent, *et al.*,
Phys. Rev. Lett. 99, 226604 (2007). [4] L. Liu *et al.*, Nature
Phys. 10, 561 (2014). [5] L. Liu *et al.*, Phys. Rev. B 91, 235437 (2015).

Fig. 2: Weal-anti localization and its analysis of 6 nm-thick Pt film at 1.6 K

Fig. 3: field dependent ΔR at each temperature