Magnetoresistance of Pt(001)/Fe-phthalocyaine/MgO(001) pseudo-epitaxial multilayer 阪大院基¹,東北大院工², JASRI³,阪大 CSRN⁴,東北大 CSRN⁵
^o下瀬弘輝¹,榎涼斗²,蒲生寛武²,河辺健志¹,塚原拓也¹,小谷佳範³,豊木研太郎³, 中村哲也³,後藤穣^{1,4},鈴木義茂^{1,4},新田淳作^{2,5},好田誠^{2,5},三輪真嗣^{1,4}
Osaka Univ.¹, Tohoku Univ.², JASRI³, CSRN-Osaka⁴, CSRN-Tohoku⁵
^oK. Shimose¹, R. Enoki², H. Gamou², T. Kawabe¹, T. Tsukahara¹, Y. Kotani³, K. Toyoki³, T. Nakamura³, M. Goto^{1,4}, Y. Suzuki^{1,4}, J. Nitta^{2,5}, M. Kohda^{2,5}, and S. Miwa^{1,4}

E-mail: shimose@spin.mp.es.osaka-u.ac.jp

Transition-metal-phthalocyanine (Pc) molecules have been explored for novel materials in spintronics because of its unique magnetic properties [1]. However, the magnetic properties of the Pc molecules have been done with localized techniques such as scanning probe microscopy, and there have been few reports characterized by electric conduction in devices [2]. In this study, we have employed pseudo-epitaxial metal/Pc interface [3], and have characterized its magnetoresistance to study interaction between spins in Pc and conduction electron in metal.

A single-crystal multilayer of fcc-MgO(001) substrate/fcc-MgO(001) (5 nm)/fcc-Pt(001) (6 nm)/Fephthalocyanine (FePc) (0, 0.32 nm)/fcc-MgO(001) (2 nm) was prepared (Fig.1). The multilayer device was fabricated with a channel length of 40 μ m and width of 10 μ m. FePc-0.32-nm corresponds to about one molecular layer of the FePc. Figure 2 shows the device resistance under magnetic field (*H*) perpendicular to the film plane. In the spectra in Fig. 2, normal magnetoresistance (MR) ($\propto H^2$) was subtracted as a background. As shown in Fig. 2(a), Pt/MgO device shows MR which indicates weak anti-localization similar with the previous study [4]. When the FePc was introduced at Pt/MgO interface, MR changes as shown in Fig. 2(b). Since significant change in MR was not observed in metal-free Pc (Pt/H₂Pc/MgO device, not shown), these results demonstrate that conduction electron in Pt and spin in FePc are interacted with each other. A part of this work was supported by JSPS KAKENHI (Nos. JP15H05420, JP26103002).

N. Tsukahara *et al.*, PRL **102**, 167203 (2009). [2] A. Atxabal *et al.*, Nat. Commun **7**, 13751 (2016).
 T. Kawabe *et al.*, APEX **11**, 013201 (2018). [4] J. Ryu *et al.*, PRL **116**, 256802 (2016).