Thermoelectric properties of FeV0.955-xHf0.045TixSb half-Heusler phase

oKévin Delime-Codrin¹, Tsunehiro Takeuchi^{1,2}

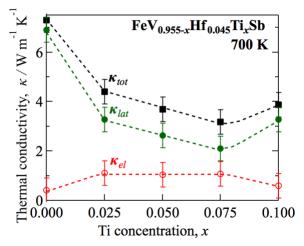
¹ Toyota Technological Institute, Nagoya 468-8511, Japan ² IMaSS, Nagoya University, Nagoya 464-8603, Japan **E-mail :** delime-codrinkevin@hotmail.fr

Introduction

The FeVSb half-Heusler phase (HH-phase), consisting solely of cheap and non-toxic elements was studied as a new thermoelectric material. By using theoretical calculations⁽¹⁾, we found that the FeVSb HH-phase is capable of possessing a large figure of merit $ZT = S^2 T/\rho \kappa$ exceeding 0.80 at a p-type condition at 700 K. To confirm this prediction, we prepared FeV_{1-x}Ti_xSb HH-phases alloys and found that the figure of merit ZT of FeV_{1-x}Ti_xSb HH-phases showed almost the same ZT-value as that predicted; ZT = 0.63 for FeV_{0.80}Ti_{0.20}Sb at 700 K. Notably, this value is the highest ever reported⁽²⁾ for FeVSb-based HH-phases.

The partial element substitutions, such as (Ti, Nb) for V and Co for Fe, were reported to be an efficient way to drastically reduce the lattice thermal conductivity of FeVSb-based HH-phases^(2, 3). Otherwise, we realized that the influence of heavy element partial substitution such as Hf, Ta or W for V wasn't investigated yet. In this study, therefore, we fabricated HH-phases at the compositions of FeV_{0.955-x}Hf_{0.045}Ti_xSb (0 < x < 0.10) to obtain a higher *ZT* value by decreasing the lattice thermal conductivity.

Experimental Procedure


A series of samples were synthesized at the compositions of FeV_{0.955-x}Hf_{0.045}Ti_xSb ($0 \le x \le 0.10$) by using the induction melting method under argon atmosphere. Then the ingot was crushed into powder and re-melted by arc melting at least 2 times under argon atmosphere. The prepared ingot was annealed at 700 °C for 3 days in vacuum. Finally, the obtained ingots were crushed into powders and sintered into bulk by means of Hot Press technique with an applied pressure of 54 MPa at 600 °C for 15 hours. The thermal conductivity κ was measured by laser flash method, the Seebeck coefficient *S* by steady state method, and the electrical resistivity ρ by four-probes method, over the wide temperature range of 300-700 K.

Results

All the prepared samples contained the

HH-phase as the dominant phase. We found that all the FeV_{0.955-x}Hf_{0.045}Ti_xSb HH-phases showed a ptype behavior at x > 0. Remarkably, the FeV_{0.905}Hf_{0.045}Ti_{0.05}Sb sample exhibited a large magnitude of Seebeck coefficient exceeding 300 μ VK⁻¹ and a low electrical resistivity below 1.63 mΩ cm at 700 K. The lattice thermal conductivity κ_{lat} of samples monotonically decreased with increasing Ti concentration at 0.025 < x < 0.075. The FeV_{0.88}Hf_{0.045}Ti_{0.075}Sb sample showed the minimal value of $\kappa_{tot} = 3.2$ W m⁻¹K⁻¹ at 700 K.

As a result, the magnitude of ZT increased up to 1.15 at 700 K for FeV_{0.905}Hf_{0.045}Ti_{0.05}Sb. This ZT value is almost twice than that of FeV_{0.80}Ti_{0.20}Sb (ZT = 0.63) previously reported ⁽²⁾.

Figure 1 Lattice thermal conductivity κ_{lat} , electron thermal conductivity κ_{el} and total thermal conductivity κ_{tot} of FeV0.955-xHf0.045TixSb HH-phases at 700 K.

Summary

We succeeded in effectively decreasing the lattice thermal conductivity of $\text{FeV}_{0.955-x}\text{Hf}_{0.045}\text{Ti}_x\text{Sb}$ HH-phases without the degradation of its electrical properties to obtain a large *ZT*-value exceeding unity.

References

- A. Yamamoto, T. Takeuchi: J. Electron. Mater 46, 3200 (2016).
- [2] K. Delime-Codrin et al, Jpn. J. Appl. Phys 56
- , 111202 (2017).
- [3] Fu C. et al, J. Appl. Phys 112, 124915 (2012).