p型Na_(2+x),Ga_{2+x}Sn_{4-x}焼結体の合成と熱電特性

Preparation of p-type Na_(2+x), Ga_{2+x}Sn_{4-x} sintered samples and their thermoelectric properties 東北大多元研¹, JST さきがけ², 産総研³°山田 高広^{1,2}, 池田 卓史³, 永井 秀明³, 山根 久典¹ IMRAM, Tohoku Univ.¹, JST-PRESTO², AIST³ [°]Takahiro Yamada^{1,2}, Takuji Ikeda³, Hideaki Nagai³, Hisanori Yamane¹

Hisanori yamane

E-mail: yamataka@tagen.tohoku.ac.jp

講演者らはトンネル状の空隙の中にディスオーダを伴った Na 原子が配置した結晶構造を有す るジントル化合物に着目し,それらの熱電特性を明らかにする研究を行っている¹⁾. これまでに Na_{2+x}Ga_{2+x}Sn_{4-x} (0 ≤ x ≤ 0.25, Fig. 1)の緻密焼結体(相対密度 97–99%)を作製し,一部の試料が n 型 の比較的高い熱電特性 (x = 0.19, ZT = 0.60–0.82, 295 K)を示すこと,また,格子の熱伝導率(κ_{lattice}) が約 0.6 Wm⁻¹K⁻¹であることを報告している²⁾. 本研究では,これまでに得ることができなかった p 型の特性を示す Na_{2+x}Ga_{2+x}Sn_{4-x} を合成することを目的として,原料の金属組成比を変えて Na_{2+x}Ga_{2+x}Sn_{4-x} 緻密焼結体を作製し,それらの熱電特性を評価した.

Na 片, Ga 粒, Sn 粒を, Ar ガス雰囲気下のグローブボックス内で所定量秤量した. 試料の加熱 は、ステンレススチール製の容器内に Ar 雰囲気で密封した焼結 BN 製の坩堝内で行った. Na と Sn のみを 873 K で 2 h 加熱した後、坩堝内に Ga を加えて 973 K で 2 h 加熱した. この試料を粉砕 し、圧粉成型した後、698–713 K で 36–60 h 加熱した. この粉砕・混合・成型・焼成の過程を 2 回 繰り返して得られた試料の粉砕粉を、加圧焼結装置を用いて 673–693 K、50 MPa で 20 min 加熱し て焼結体(φ 12×3–4 mm³)を作製した. 焼結体のゼーベック係数(*S*)と電気抵抗率(ρ)、熱伝導率(κ)を、 それぞれ温度差起電力法と直流四端子法、ホットディスク法を用いて Ar 雰囲気中で測定した.

原料組成(Na_(2+x), Ga_{2+x}Sn_{4-x}, x = 0.19)の Na と Ga の原子比(y = Na/Ga)を変えて緻密焼結体を作製 し、それらの 295 K における熱電特性を評価した(Table 1). y=1.0 の組成で作製された試料は n 型 で、S は-215 μ V K⁻¹, ρ は 1.58 mΩcm の値を示し、y = 1.03 で S = -99 μ V K⁻¹, ρ = 0.33 mΩcm まで 変化した. これに対し、y < 1 では p 型の試料が得られ、y = 0.99 では S = +345 μ V K⁻¹, ρ = 59.8 mΩcm で、これらの値は y=0.94 まで y の減少とともに減少した. y=0.96 や 0.94 の試料が最も高い p 型 の特性を示し、いずれも ZT は 0.16 であった。これらのことから、Na_{2+x}Ga_{2+x}Sn_{4-x} は電荷的中性が 保持されるジントル則([Na]⁺_{2+x} [Ga]⁻_{2+x} [Sn]⁰_{4-x})から外れる不定比性を有し、それによってキャ リアのタイプや濃度が大きく変化することが示唆された。これまでに同じ原料組成や加熱条件で 作製された試料において、その特性が大きくばらつくことが観察されており⁻¹, このことも化合 物のわずかな不定比性が主な要因であることが考えられた。

Table 1 Thermoelectric properties of the sintered samples prepared from the constituent elements with compositions of $Na_{2.19}$, $Ga_{2.19}Sn_{3.81}$ (295 K).

У	1.03	1.01	1.00	0.99	0.97	0.96	0.94
Relative density, %	98	96	99	97	100	97	98
ho, m Ωcm	0.33	0.58	1.58	59.8	40.6	14.1	10.2
<i>σ</i> , ×10⁵ S m⁻¹	3.03	1.72	0.63	0.02	0.02	0.07	0.10
<i>S</i> , µV K⁻¹	-99	-118	-215	345	313	226	193
<i>к,</i> W m ⁻¹ К ⁻¹	2.65	1.73	1.06	0.58	0.60	0.67	0.67
ZT	0.33	0.41	0.82	0.10	0.12	0.16	0.16

Fig. 1 Schematic drawing of the crystal structure of $Na_{2+x}Ga_{2+x}Sn_{4-x}$ (x = 0.19).

参考文献: 1) T. Yamada *et al. Adv. Mater.* 2015, 27, 4708, 2) 山田高広ら 第 78 回応用物理学会秋季学術講演会 講演番号 5a-A503-1. 謝辞:本研究は日本学術振興機構さきがけ(JPMJPR151C),物質・デバイス領域共同研究拠点等の助成を受けて行なわれた.

不純物あり

295 K

 Kcarrier, W m⁻¹ K⁻¹
 2.18
 1.24
 0.46
 0.01
 0.02
 0.05
 0.07

 Ktotal-Kcarrier, W m⁻¹ K⁻¹
 0.47
 0.49
 0.60
 0.57
 0.58
 0.62
 0.60

© 2018年 応用物理学会

Kcarrier, W m-198-1040 1.72 0.93 0.46 0.01 0.01 0.05 0.05