Hf_xZr_{1-x}O₂が広い濃度領域で強誘電性を示す起源について On physical origin of ferroelectricity in wide concentration range of Hf_xZr_{1-x}O₂ ¹東大院工,²産総研 [。]柴山 茂久¹, 西村 知紀¹, 右田 真司², 鳥海 明¹ ¹Univ. of Tokyo and ²AIST, ^oS. Shibayama¹, T. Nishimura¹, S. Migita², and A. Toriumi¹

E-mail: shibayama@adam.t.u-tokyo.ac.jp

[研究背景]

 HfO_2 と ZrO_2 の混晶体である $HfZrO_2$ は広い濃度範囲で強誘電性を示す材料であり^[1],多くのグループ が研究に用いている.薄膜において *monoclinic* で常誘電相である HfO_2 と *tetragonal* で反強誘電相であ る ZrO_2 の混晶では、中間相として *orthorhombic* が安定化されると単純に考えられがちであるが、実際 には HfO_2 に ZrO_2 を添加していった場合、他のドーパントとは異なり極めて広い範囲で強誘電性を示 すことがわかっている^[2].本講演では、 $Hf_xZr_{1-x}O_2$ の強誘電相の安定化機構を理解するため、 ZrO_2 サイ ドから HfO_2 をドーピングすることによる結晶構造・(反)強誘電性の変化を調べた結果を報告する.

[実験方法]

化学洗浄を施した p⁺-Ge(001)基板上に, rf co-sputtering 法を用いて約 30 nm の各種 doped ZrO_2 膜を室温 で堆積した. その後, 600°C の N₂熱処理 (PDA) を 30 s 間行い, 結晶構造を XRD により, Au を真空 蒸着して誘電特性を分極-電界 (P-E) 特性によって評価した.

[結果および議論]

図1は un-doped ZrO₂ 膜, Y-doped ZrO₂ 膜の *P-E* 特性である. Yを doping すると誘電特性は反強誘電性 から常誘電性に変化した. この時の結晶構造の変化は, Y-doped ZrO₂ では t/o 相(高対称相)の(111)回 折ピークが低角側にシフトしており,常誘電相である cubic 相への変態が起きていることを示唆する. この結果は, ZrO₂に対する Y₂O₃のような第三元素ドーピングによる結晶変態の方向性は orthorhombic 方向ではなくより tetragonal/cubic 相側へシフトさせていることを示している. 図2に示されているように,この事実は ZrO₂ と HfO₂ のどちらがエネルギー的に tetragonal 相に近いかという点で決まってい ることがわかる.特に薄膜ではより高対称相が出現しやすいことを考えると, ZrO₂サイドから見た HfO₂ は monoclinic 相を安定化させやすい材料であり,図3に示すように ZrO₂の強誘電相が出現する.

一旦, monoclinic 相と tetragonal 相の共存状態が形成されると, 濃度 x の広い領域に渡って共存状態 が維持され, その結果この系では広い x の値に対して強誘電性が観測されると理解できる.

[結論]

 HfO_2 は薄膜でも monoclinic 相が安定化されやすいが、 ZrO_2 では tetragonal が安定化されることを考え れば、 Y_2O_3 などの高対称相を安定化するドープすると、 HfO_2 ではそれらの共存状態が実現され強誘電 相が発現する. 一方、 ZrO_2 薄膜では既に tetragonal 相が発現しているので Y_2O_3 をドープすると常誘電 相側にシフトする. ZrO_2 への HfO_2 ドーピングでは ZrO_2 にとって monoclinic 相を形成する方向に働く ために広い範囲で強誘電性が発現すると理解できる.

本研究は JST-CREST(JPMJCR14F2), およびその一部は挑戦的萌芽研究(No. 16K14225)の支援を受けて行われた. [1] J. Müller *et al.*, Nano Lett. **12**, 4318 (2012). [2] L. Xu *et al.*, J. Appl. Phys. **122**, 124104 (2017).

