強誘電体 Y-doped HfO2の薄膜化に伴う残留分極量および信頼性の向上

Improvements of Remanent Polarization and Endurance Characteristics in Thin Ferroelectric Y-doped HfO₂

 東大院工,2) 産総研 ⁰田璇¹、柴山茂久¹、西村知紀¹、矢嶋赳彬¹、右田真司²、鳥海明¹
1) Univ. of Tokyo, 2) AIST, ⁰X. Tian¹, S. Shibayama¹, T. Nishimura¹, T. Yajima¹, S. Migita² and A. Toriumi¹

E-mail: xuan@adam.t.u-tokyo.ac.jp

1. Introduction

One of the most exciting properties in ferroelectric HfO_2 is that very thin ferroelectric film is available, while cycling properties of ferroelectric films are critically important in terms of ferroelectric applications.

In this work, we show thickness dependence of P_{sw} ($P_{sw}=P_r^++P_r^-$) in ferroelectric HfO₂ down to 3 nm. Although P_{sw} is sharply reduced below 8 nm with post deposition anneal (PDA), a large P_{sw} enhancement is achieved by post metallization anneal (PMA) down to 5 nm. Furthermore, a highly reliable cycling performance is reported in 5 nm ferroelectric HfO₂ with neither wake-up nor obvious fatigue to 10^8 cycles.

2. Results and Discussion

 Y_2O_3 -doped HfO₂ film was prepared on p⁺-Ge substrate, and followed by PDA. Y doping concentration was optimized at 30-nm-thick HfO₂^[1]. A sharp drop of P_{sw} is observed below 8 nm, as shown by the black curve in **Fig. 1(a)**. When the thermal treatment was changed from PDA to PMA, a TiN top layer was deposited on HfO₂ before annealing. PMA hugely enhances P_{sw} in the ultrathin region down to 5 nm, as shown by the red curve in **Fig. 1(a)**. Comparing to 30 nm film, 5-nm-thick Y-HfO₂ exhibits a monotonic increase of P_{sw}, which enables to lower the operating voltage, as shown in **Fig. 1(b)**.

Next, two thicknesses of ferroelectric HfO₂ films with PMA in **Fig. 1(b)** were cycled at 3 MV/cm by a square pulse at 100 kHz. **Fig. 2** shows the cycling number dependence of $\pm P_r$ for 5 and 30 nm thick HfO₂ with PMA. Both wake-up and fatigue of polarization are observed in 30 nm film for 10⁶ cycles, while no visible wake-up and very slight fatigue in 10⁸ cycles under 3 MV/cm are demonstrated in 5-nm-thick film. It is surprising to see that Y-doped HfO₂ with good ferroelectricity is maintained down to 5 nm. Although the origin of the higher reliability in thinner films is not so clear, it is inferred that the grain size can be comparable to the film thickness in ultrathin HfO₂^[2], therefore, there may be only a single domain connecting two electrodes^[3] and no internal freedom of domain switching in the film. This view may explain significant improvements of the wake-up and fatigue in thinner ferroelectric HfO₂ film.

3. Conclusion

 P_{sw} in ferroelectric HfO₂ was simply enhanced down to 5 nm by employing PMA. A highly reliable cycling performance was also demonstrated in 5-nm-thick HfO₂ ferroelectric film with no wake-up, almost no fatigue to 10^8 cycles. Good cycling performance in 5-nm-thick HfO₂ is promising for low power applications.

[1] T. Olsen et al., Appl. Phys. Lett. 101, 082905 (2012). [2] P. Polakowski and J. Müller, Appl. Phys. Lett. 106, 232905

This work was supported by JST-CREST (JPMJCR14F2).

(2015). [3] S. B. Ren et al., Phys. Rev. B, 54, R14337-R14340 (1996).

Fig. 1 (a) The thickness dependence of P_{sw} in ferroelectric HfO₂ from 30 to 3 nm with PDA and PMA. (b) P-V hysteresis in 30 and 5 nm Y-doped HfO₂ with PMA.

Fig. 2 Cycling characteristics of P_r of ferroelectric Y-doped HfO₂ with 30 and 5 nm. The devices were stressed by square pulses with 3 MV/cm at 100 kHz.