Evaluation of border-traps in GeO₂/Ge gate stacks grown by thermal oxidation and plasma oxidation

Wei-Chen Wen¹, Taisei Sakaguchi¹, Keisuke Yamamoto¹, Dong Wang¹ and Hiroshi Nakashima²

¹ Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ.

² Global Innovation Center, Kyushu Univ.

E-mail: 3ES17010E@s.kyushu-u.ac.jp

Introduction

Ge is of great interest in ULSI technology due to its high carrier mobilities. Some research groups have studied Ge oxidation mechanisms and evaluation of border-traps (BTs) in Ge-MOS.[1,2] Recently, we developed a method for evaluating BT density (N_{bt}) using deep-level transient spectroscopy (DLTS), and reported that an Al-PMA can reduce the N_{bt} in p-MOS but not in n-MOS.[3] In this study, we focused on n-MOS and investigated the N_{bt} into GeO₂/Ge gate stacks formed by thermal oxidation and plasma oxidation using DLTS.

Experimental

An n-type (100) Ge substrate with doping concentration 9.3×10^{15} cm⁻³ was used. After wet cleaning, GeO₂ films were grown by two methods. One was the bilayer passivation (1nm-GeO₂/1-nm SiO₂) using plasma oxidation and SiO₂ deposition, followed by a post thermal oxidation (PTO) at 550°C for 15 min (total GeO₂ thickness: 6.6 nm) and 425°C for 9 h (total GeO₂ thickness: 2.6 nm) in O₂ ambient. Another was ECR plasma oxidation (GeO₂ thickness: 2.8 nm). Then, SiO₂ films were deposited up to a total thickness of 15 nm for all samples, and a post thermal oxidation (PDA) was performed at 400°C for 30 min in N₂ ambient. Finally, Al was deposited and patterned. A schematic of sample structure is shown

Fig. 1 sample structure.

in Fig. 1. The N_{bt} was measured by DLTS with a pulse electric field (E_{AP}) of 2 MV/cm under a frequency (f) of 10 Hz, corresponding to a BT position of 2.0 nm from the GeO₂/Ge interface. The N_{bt} distribution was measured by changing f.

Results and discussion

Figure 2 shows dependence of $N_{\rm bt}$ on temperature of all samples. The $N_{\rm BT}$ in the plasma oxidation sample by ECR showed lower than those of the PTO samples and a smaller temperature dependence. These results indicate that the GeO_2 quality formed by ECR plasma oxidation is much better, and the species of border-traps in the plasma oxidation sample would be different from those of thermal oxidation samples. Thermal oxidation of Ge involves oxygen vacancy because O2 dose not arrive at GeO₂/Ge interface.[2] By contrast, in the case of plasma oxidation, oxygen plasma provide oxygen atoms so that the mechanism of GeO2 formation through plasma oxidation is different from those through PTO, leading to different border-trap species. We will present the $N_{\rm bt}$ distribution for each sample.

References

- [1] K. Tanaka et al., JJAP, 54, 04DA02 (2015).
- [2] X. Wang et al., APL, 111, 052101 (2017).
- [3] W.-C. Wen et al., SSDM2017, p.505 (2017).

Fig. 2 Dependence of $N_{\rm bt}$ on temperature.