不純物ドーピングによる有機太陽電池の開放端電圧の制御

Controlling Open-Circuit Voltage in Organic Solar Cells by Impurity Doping

総研大¹, 分子研²⁰新宅 直人^{1,2} 伊澤 誠一郎^{1,2}, 平本 昌宏^{1,2}

SOKENDAI¹, IMS² ^oNaoto Shintaku^{1,2}, Seiichiro Izawa^{1,2}, Masahiro Hiramoto^{1,2}

E-mail: shintaku@ims.ac.jp

序 以前、我々は、H₂Pc/C₆₀ 二層型有機太陽電池の開放端電圧を不純物ドーピングにより制御でき ると報告した[1]。ドナー層(H₂Pc)にアクセプター性ドーパント(MoO₃)を加えると開放端電圧(V_{oc}) が減少し、ドナー性ドーパント(Cs₂CO₃)を加えると V_{oc} が増加する。また、ドーパント濃度を高 くすると開放端電圧の変化量が大きくなることを報告した。本研究ではこのドーピング効果を調 べるため、ドナー/アクセプター界面にドープ層を挿入した三層型有機太陽電池を作製した。その 結果、ドーピングによるドナー/アクセプター界面近傍のエネルギー準位接続の変化が V_{oc} に影響 していることを明らかにしたので報告する。

 実験 H₂Pc/H₂Pc:dopant/C₆₀ 三層型有機太陽電池を真空蒸着により作製した(Figs. 1(a), 1(b))。ドー ピング濃度は蒸着レートにより制御し2000 ppm とした。H₂Pc/H₂Pc:dopantの膜厚は45 nm/5 nm, 40 nm/10 nm とした。光照射下で電流一電圧特性を測定した。ケルビンプローブ法によって界面のエ ネルギー準位接続を調べた。
(a) <u>Moos</u> H₂Pc:MOOs <u>BCP</u>
(b) <u>Moos</u> H₂Pc:Co₂CO₃ <u>BCP</u>

結果と考察 測定した電流一電圧特性をFigs. 1(a), 1(b) に示す。H₂Pc:MoO₃の場合 (Fig. 1(a))、ドープ層の膜厚が 0, 5, 10 nm と増え るにつれ Voc が 0.47 V から 0.41 V に減少し、 以降の膜厚ではほぼ同じ値を示した (Fig. 1(c), 緑)。 $H_2Pc:Cs_2CO_3$ では V_{OC} が0.52Vま で増加し、膜厚に対する Voc は MoO3 と同様 の傾向を示した (Fig. 1(c),赤)。 H₂Pc:dopant/C₆₀界面のエネルギー準位接続 を調べるため、C₆₀上に蒸着した H₂Pc:dopant の仕事関数を測定した (Fig. 1(d))。仕事関 数がドープ層 10 nm 以内で急激に変化して おり、Vocの結果 (Fig. 1(c)) と一致する。つ まり、H₂Pc:dopant/C₆₀界面近傍 10 nm 以内の エネルギー準位接続が Voc の増減を決定して いる[2]。一方、H₂Pc:Cs₂CO₃層を厚くすると

Fig. 1. *J-V* characteristic with schematic of device structure (a), (b). Open-circuit voltage as a function of the doped layer thickness (c). Energy level mapping with schematic of sample structure (d).

短絡電流および形状因子が減少した。これは Cs₂CO₃ ドーピングが正孔輸送を阻害したためである。 つまり、ドープ層の膜厚を薄くすることで V_{OC}のみを増加できるといえる。

[1]新宅ら, 第78回秋季応用物理学会, 7p-A504-9. [2]N. Shintaku, M. Hiramoto, S. Izawa, submitted.