Annealing effect on magnetic anisotropy and its voltage modulation of FeIr/MgO 阪大院基礎工 ¹,阪大 CSRN²,

○長谷部 晶大 ¹, 繩岡 孝平 ¹, Joko Suwardy ¹, 後藤 穣 ¹, 鈴木 義茂 ^{1,2}, 三輪 真嗣 ^{1,2} Osaka Univ. ¹, CSRN ²

S. Hasebe¹, K. Nawaoka¹, J. Suwardy¹, M. Goto¹, Y. Suzuki^{1,2}, S. Miwa^{1,2} E-mail: hasebe@spin.mp.es.osaka-u.ac.jp

To establishing an efficient electrical control of magnetization for magnetic memory devices, it is important to obtain both a perpendicular magnetic anisotropy (PMA) and voltage-controlled magnetic anisotropy (VCMA). It has recently been reported that employing Ir, which has a large spin-orbit interaction, in Fe/MgO system enhances the PMA and VCMA [1]. In this study, we evaluated the PMA and the VCMA of Fe/Ir/MgO multilayers after annealing at various temperatures to reveal the influence of Ir insertion on the magnetic properties.

An epitaxial single crystalline multilayer of MgO (001)substrate|MgO (5 nm)|V (30 nm)|Fe (20 nm)|Ir (0-0.8 nm)|MgO (5 nm) was fabricated by molecular beam epitaxy method (Fig. 1). SiO₂ (50 nm) was then deposited by sputtering and 2 micro-size antennas, selectively excite wavenumber of $1.2 \,\mu\text{m}^{-1}$, were prepared by microfabrication. The PMA and VCMA of this multilayer were evaluated by measuring the propagating spin-wave frequency and the frequency shift caused by voltage application. Magnetostatic surface spin-wave was employed, and was evaluated by analyzing the *S*-parameter. Figure 2 is the Ir thickness dependence of the frequency shift of the spin-wave when DC voltage of -4V (= -3.1 × 10⁻² V/nm in MgO) is applied. Δf_{21} is the voltage-induced frequency shift in S_{21} (antenna1 \rightarrow 2) and δf_{12} is that of S_{12} (antenna2 \rightarrow 1). As the Ir thickness increases, the frequency shift monotonically decreases and vanishes at about 1 monatomic layer (~0.2 nm). In the presentation, the PMA and VCMA after annealing at various temperatures will be discussed. This work was supported by JSPS KAKENHI (No. 26103002) and ImPACT program.

SiO ₂ (50 nm)
MgO (5 nm)
Ir (0-0.8 nm)
Fe (20 nm)
V (30 nm)
MgO(001) sub.

Fig. 1 Multilayer structure

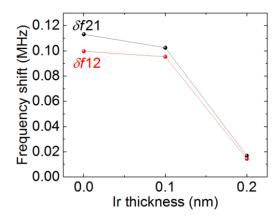


Fig. 2 Ir thickness dependence of frequency shift

[1] T. Nozaki et al., NPG Asia Mater. 9, e451 (2017).