Ir 置換したα-Fe₂O₃ 薄膜の X 線吸収微細構造解析

X-ray absorption fine structure analysis of Ir-doped α-Fe₂O₃ 東北大 ¹, JASRI², 名工大 ³, ImPACT⁴, ^O野崎友大 ¹, S. P. Pati¹, 塩川陽平 ¹, 鈴木基寛 ², 壬生攻 ³, M. Al-Mahdawi¹, 葉術軍 ¹, 佐橋政司 ^{1,4} Tohoku Univ. ¹, JASRI², Nagoya Inst. Tech. ³, ImPACT⁴, ^OT. Nozaki¹, S. P. Pati¹,

Y. Shiokawa¹, M. Suzuki², K. Mibu³, M. Al-Mahdawi¹, S. Ye¹, and M. Sahashi^{1,4}

E-mail: nozaki@ecei.tohoku.ac.jp

 α -Fe₂O₃ はモーリン転移と呼ばれるスピン再配列転移を持つ反強磁性体である。モーリン転移温度 T_M 以下では c 軸に平行な反強磁性スピンが、 T_M 以上では ab 面内に倒れ、同時に弱強磁性(傾角反強磁性)を示すことが知られている。この α -Fe₂O₃ は、同じコランダム構造を持つ電気磁気材料反強磁性体 Cr_2O_3 薄膜のネール温度 T_N を向上させうる下地層[1]としても注目を集めてきた。このような用途のためには、十分高い温度まで垂直スピン構造を保った(室温よりも十分高い T_M を持つ) α -Fe₂O₃ 薄膜が必要となる。我々はこれまで、無置換では 260K 程度である α -Fe₂O₃ 薄膜の T_M がたった 0.1%の T_M の微量置換により 400K 以上まで向上することを見出してきた[2-3]。 ただし、この T_M 向上の原因はこれまで明らかにされていなかった。本研究では、この T_M 向上の原因を明らかにすることを目的に、メスバウア分光と T_M 級吸収微細構造(T_M)の測定結果から、 T_M に置換した T_M -Fe₂O₃ の化学状態について考察を行った。

無置換/Ir 置換 α -Fe $_2$ O $_3$ 薄膜は Al $_2$ O $_3$ 基板直上に、Fe もしくは Fe-Ir 合金ターゲットを用いた反応性スパッタ法で作製した。X 線回折から、Ir 置換によって c 軸長が伸び、a 軸長が縮むことを確認した。Fe K 端と Ir L 端の広域 X 線吸収微細構造(EXAFS)スペクトルは類似した EXAFS 振動を示した。これら X 線回折と EXAFS スペクトルの測定結果は、Ir が Fe サイトに置換されていることを示唆している。Ir L 端の X 線吸収端近傍構造(XANES)スペクトルは、Ir が 4+に近い状態で置換されていることを示していた。一方で、メスバウア分光から、Fe は Ir 置換前後で変わらず 3+の状態で存在していることがわかった。これらの結果を総合すると、Ir を置換した α -Fe $_2$ O $_3$ 中では、酸素過剰または Fe 欠損がおこることで、Fe の価数は保ったまま Ir が 4+の状態で存在していることが示唆される。

本研究は、革新的研究開発推進プログラム(ImPACT)の支援を受けて行われた。

- [1] Y. Kota et al., IEEE Trans. Magn., 50 (2014) 2505404.
- [2] N. Shimomura et al., J. Appl. Phys., 117 (2015) 17C736.
- [3] T. Mitsui et al., J. Phys. Soc. Jpn., 85 (2016) 063601.