Zn 拡散ソース InGaAs TFET における W/ZrO₂/Al₂O₃ ゲートスタックの効果 Effects of W/ZrO₂/Al₂O₃ gate stack on the performance of InGaAs TFET with Zn-diffused source

東京大学・院工 [°]安大煥, 尹尚希,竹中充,高木信一

The University of Tokyo, School of engineering °D.-H. Ahn, S.-H. Yoon, M. Takenaka and S. Takagi E-mail: daehwan23@mosfet.t.u-tokyo.ac.jp

【はじめに】TFET(Tunnel Filed Effect Transistor)は、サブスレショルド領域において、MOSFET の限界である 60 mV/dec より急峻な S.S.値が実現できるため、次世代低消費電力トランジスタとして注目を集めている[1]。III-V 化 合物半導体の In_{0.53}Ga_{0.47}As はバンドギャップが狭く、直接遷移型半導体であるためにバンド間トンネル電流が高く、TFET のチャネル材料として非常に有望である[1-2]。この In_{0.53}Ga_{0.47}As に Zn-doped Spin on Glass (Zn SOG)を用いて Zn 拡散を施すと 3.5 nm/dec といった非常に急峻な濃度分布勾配が得られ、シャープなトンネル接合を実現することが可能となる[2]。我々は Zn 拡散ソース InGaAs TFET に In_{0.53}Ga_{0.47}As/In_xGa_{1-x}As (x>0.53)/In_{0.53}Ga_{0.47}As 量子井戸構造と W/HfO₂/Al₂O₃(CET=1.4 nm)を導入することで、In_{0.53}Ga_{0.47}As TFET より高い I_{on} と 54mV/dec の S.S_{min}を得た[3-4]。TFET の性能はゲート電圧制御性に非常に敏感であることがよく知られている。本研究では、HfO₂より誘電率の高い ZrO₂を用いたゲートスタックが InGaAs TFET の電気特性にどのような影響を与えるかを調べる。

【研究内容】極薄膜 EOT を実現するためには、薄膜の絶縁膜を直接通り抜けるゲートリーク電流を効果的に抑えることが重要である。Fig.1に見られるように、1.7 nm より薄い CET において、ZrO₂/InGaAs MOS 構造のゲートリーク電流は、HfO₂/2-cycle-Al₂O₃/InGaA[5]より十分小さく、EOT スケーリングが可能であることが分かる。我々は InGaAs 上に W/60-cycle-ZrO₂(4.8 nm)のゲートスタックを用いることにより、10⁻⁷A/cm²(V_G=V_{tb}+1 V)の小さいゲートリーク電流で 1 nm の CET を達成することに成功した。しかしながら、ZrO₂/InGaAs の界面には界面準位密度 (D_{it})が多く存在し、キャリアトラップによるゲート制御性の劣化が予測される。この D_{it} を低減するため、ZrO₂ と InGaAs の間に 5-cycle-Al₂O₃ の Interfacial Layer(IL)を挿入した。この結果、D_{it}は 10¹³ eV⁻¹cm⁻² 以上の値から 3×10¹² eV⁻¹cm⁻² まで抑えられるが、CET は IL 層により 1.71 nm まで増加してしまう結果となった。さらに、ZrO₂の膜厚 を薄くすることで、W/(50, 40)-cycle-ZrO₂/5-cycle-Al₂O₃/InGaAs で 1.65, 1.56 nm の CET が得られた。

 ZrO_2 のゲートスタックを用いた InGaAs TFET の作製プロセスフローを Fig. 3 に、I_s-V_g特性を Fig. 4 に示す。 W/60-cycle-ZrO₂の InGaAs TFET は 1 nm の CET にも関わらず、1.71, 1.65, 156 nm のより厚い CET を示す W/(60, 50, 40)-cycle-ZrO₂/5-cycle-Al₂O₃/InGaAs TFET より性能が劣ることが分かる。これは InGaAs TFET の性能向上には、薄い EOT だけではなく D_{it} 低減も重要であることを示している。薄膜の Al₂O₃ IL 層の挿入により、InGaAs TFET の性能が改善される。ZrO₂の膜厚を減らし、InGaAs TFET の CET を 1.71, 1.65, 1.56 nm と薄くするにつれて、S.S_{min} は 64mV/dec, 62mV/dec, 61mV/dec と段々急峻になっていくことが観測される(Fig. 5)。

【結論】ZrO₂/InGaAs を用いて 10⁻⁷A/cm²(V_G=V_h+1 V)の小さいゲート電流で 1 nm の CET に達成した。ZrO₂/InGaAs の界面に 5-cycle-Al₂O₃ IL を挿入すると CET は増加するが、界面準位は 3×10¹² eV⁻¹cm⁻²程度まで効果的に抑えられる。InGaAs TFET に W/40-cycle-ZrO₂/5-cycle-Al₂O₃(CET: 1.56 nm)をゲートスタックし、61mV/dec の S.S_{min}を得た。 【**謝辞**】この研究はJST-CREST Grant Number JPMJCR1332からの支援を受けて行われた。InGaAsエピ基板を提供頂いた住友化学の山本武継氏、横山正史氏に感謝する。

Fig. 1 The gate leakage comparison of ZrO_2 with HfO₂ and Al₂O₃ on InGaAs.

Fig. 4 (a) I-V of InGaAs FET with the 6 $0{\sim}40{\text{-c}}\ \text{ZrO}_2/\text{5-c}\ \text{Al}_2\text{O}_3.$

10¹³ 60-cycles ZrO₂ 60c-ZrO₂/5c-Al₂O₃ 60c-ZrO₂/5c-Al₂O₃ 40c-ZrO₂/5c-Al₂O₃ 0 0.05 0.1 0.15 E-E_i [eV]

Fig. 2 The Dit of InGaAs MOS capacit or with ZrO_2 and $ZrO_2/5$ -cycles Al_2O_3 .

Fig. 5 The S.S_{min}-CET relationship at th e D_{it} of 2.75 eV⁻¹cm⁻²

Fig. 3 Fabrication flow of InGaAs tunnel FETs with Zn diffused source.

【参考文献】

A. C. Seabaugh et al., *IEEE Proc.* 98, 12 (2010)
M. Noguchi et al., *JAP* 118, 0 45712 (2015)
D.H. Ahn et al., *VLSI symp.*, 1 52 (2016)
D.-H. Ahn et al., APEX 10, 0 84201 (2017)
R. Suzuki et al., *APL* 100, 13 2906 (2012)