パルス放電照射における水中活性種の0次元シミュレーション

Zero-D simulation of reactive species in pulsed-discharge plasma exposed water

室蘭工大¹, 学振特別研究員², ストラスクライド大³ 〇</sup>高橋 一弘¹, 川口 悟^{1,2},

佐藤 孝紀¹, 川口 秀樹¹, Igor Timoshkin³, Martin Given³, Scott MacGregor³

Muroran I. T.¹, JSPS Research Fellow², Univ. of Strathclyde³, °K. Takahashi¹, S. Kawaguchi^{1,2},

K. Satoh¹, H. Kawaguchi¹, I. Timoshkin³, M. Given³, and S. MacGregor³

E-mail: ktakahashi@mmm.muroran-it.ac.jp

1. はじめに

放電プラズマが照射された水には、H₂O₂, ONOOH, NO₂などの ROS/RNS (Reactive Oxygen Species/Reactive Nitrogen Species,活性酸素種/活性窒素種)が溶存し ており、これらは殺菌や植物の成長促進に有用である ^[1]。しかし、それらに寄与する ROS/RNS は用途により 異なるため、ROS/RNS の生成を制御、すなわち、必要 な ROS/RNS の選択的な生成が望まれる。本研究では、 水に放電プラズマを照射した際に生成される水中の ROS/RNS 生成過程の解明を目的とする。

著者らは、前報^[2]にて N_2 ガス雰囲気で水上パルス放 電を発生させたときに生成される水中の H_2O_2 , NO_2 , HNO₂, NO₃:および ONOOH の濃度を酸解離平衡および 化学反応に基づくレート方程式を用いて計算し、計算 値が実測値とおおむね一致することを報告した。ここ では、ONOOH の分解^[3]後に生成される種の反応を考 慮したモデルで各物質の濃度を計算した結果について 報告する。

2. 計算方法および条件

放電照射に伴いH₂O₂, NO₂およびNO₃が生成される ものとし、単位時間当たりの生成量は、放電領域に比 例するものする。なお、イオンの溶解により、水の導 電率が増加し、放電領域が減少するため、その変化を NO₂とNO₃の濃度の上昇率の変化から推定した。(1)式 に示すようにNO₂はHNO₂と酸解離平衡下にあり、(2) 式に示すように、HNO₂はH₂O₂と反応し、ONOOHを生 成する。ONOOHは、(3)式に示すように、OH/NO₂ある いはNO₃/H⁺に分解される。OHおよびNO₂については、 (4)および(5)式に示す反応を経て、H₂O₂およびNO₂ /NO₃に転化されるものとする。さらに、放電照射後の サンプリングから分析までにおいても、(1)-(5)式に示 す反応を考慮した。なお、NO₂とHNO₂の存在比の算出 には、水中のイオン濃度から算出したpHを用いた。また、生成物の濃度は水中で一様であるものとした。

	2 0,20
$NO_2^- + H^+ \neq HNO_2 (pK_a = 3.3)$	(1)
$HNO_2 + H_2O_2 + H^+ \rightarrow ONOOH + H_2O + H^+$	• (2)
ONOOH \rightarrow OH + NO ₂ (24%) or NO ₃ ⁻ + H ⁺ (76%)	
$(k = 0.13 + 0.87 [H^+] s^{-1})^{[3]}$	(3)
OH + OH \rightarrow H ₂ O ₂ (k = 4.2×10 ⁻⁹ M ⁻¹ ·s ⁻¹) ^[4]	(4)
$2NO_2 + H_2O \rightarrow NO_2^- + NO_3^- + 2H^+$	
$(k \cdot [H_2O] = 4.2 \times 10^{-9} M^{-1} \cdot s^{-1})^{[5]}$	(5)

ここで, *k*は反応速度定数, [H⁺]および[H₂O]はそれぞれ 水素イオンおよび水のモル濃度(M)を示す。以上の反 応に基づくレート方程式を4次のRunge-Kutta法を用い て解析し,水中のH₂O₂, NO₂⁻, NO₃⁻, ONOOH, HNO₂, OH およびNO₂の濃度を算出した。

3. 計算結果

Fig.1 は、H₂O₂, NO₂:および NO₃:の濃度の計算結果を 実測値と併せて示す。計算結果は、おおむね実測値と 一致することがわかる。また、前報^[2]とほぼ同様の結 果であり、(4)および(5)式による反応は、水中の ROS/RNS の生成にほとんど影響しないことがわかる。 なお、ONOOH, OH および NO₂の濃度の計算値はそれ ぞれ 10⁻⁶, 10⁻⁹および 10⁻⁸ M のオーダーであった。

本研究の一部は JSPS 科研費 JP17J11124 の助成を受けて実施されたものである。

参考文献

[1] 例えば S. Ikawa et al.: J. Phys. D. 49, 425401 (2016).

[2] 高橋 他:第 78 回応用物理学会秋季学術講演会 講演予稿 集, 07-179 (2017).

[3] C. E. Anderson *et al.*: Plasma Chem. Plasma Process. **36**, 1393 (2016).

[4] A. J. Elliot *et al.*: J. Chem Soc., Faraday Trans. **86**, 1539 (1990).
[5] Y.-N. Lee and S. E. Schwartz: J. Phys. Chem. **85**, 840 (1981).

