Fe/CuIn_{1-x}Ga_xSe₂界面における高垂直磁気異方性の理論予測 Theoretical prediction of large perpendicular magnetic anisotropy at Fe/CuIn_{1-x}Ga_xSe₂ interface

物材機構¹, 京都工繊大²⁰増田 啓介¹, 葛西伸哉¹, 三浦 良雄^{1,2}, 宝野和博¹ NIMS¹, KIT², ^oKeisuke Masuda¹, Shinya Kasai¹, Yoshio Miura^{1,2}, Kazuhiro Hono¹ E-mail: MASUDA.Keisuke@nims.go.jp

Large perpendicular magnetic anisotropy (PMA) at interfaces between ferromagnetic electrodes and tunnel barriers is an essential property in magnetic tunnel junctions (MTJs) to realize non-volatile magnetic random access memories (MRAMs). Up to now, large PMA has been observed at interfaces between Fe-based ferromagnets and oxide barriers [1,2]. However, no previous studies have reported such large interfacial PMA in the case of non-oxide barriers. Recently, Kasai *et al.* successfully fabricated a new MTJ consisting of a semiconductor barrier CuIn_{0.8}Ga_{0.2}Se₂ (CIGS) and ferromagnetic Heusler alloys Co₂FeGa_{0.5}Ge_{0.5} [3]. In this MTJ, they observed high magnetoresistance (MR) ratios and low resistance-area products (*RA*), both of which are required properties for MRAM applications. Possible occurrence of interfacial PMA in the CIGS-based MTJ must be investigated, but no theoretical and experimental studies have addressed this issue.

In this work, we theoretically investigated interfacial magnetocrystalline anisotropy in various Fe/semiconductor heterostructures including Fe/CuIn_{1-x}Ga_xSe₂ by estimating their interfacial anisotropy constants K_i on the basis of the first-principles calculations. We found that most of the heterostructures show interfacial PMA. In particular, we obtained a quite large K_i of 2.305 mJ/m² in Fe/CuInSe₂, which is about 1.6 times as large as that of Fe/MgO (1.396 mJ/m²) with a similar barrier thickness (see Fig. 1). By studying the correlation between anisotropy constants K_i and anisotropies of orbital magnetic moments at interfacial Fe atoms, we found that the PMA in the present systems can be explained by the Bruno's relation, which means that minority-spin scatterings around the Fermi level provide the dominant contribution to the PMA. We further

Fig. 1. Values of K_i in Fe/CuIn_{1-x}Ga_xSe₂(001) obtained in this work. We also showed K_i of Fe/MgO(001) for comparison.

[1] S. Ikeda et al., Nat. Mater. 9, 721 (2010).

- [2] J. W. Koo et al., Appl. Phys. Lett. 103, 192401 (2013).
- [3] S. Kasai et al., Appl. Phys. Lett. 109, 032409 (2016).
- [4] K. Masuda et al., Phys. Rev. B 96, 174401 (2017).

analyzed the local density of states (LDOS) of Fe/CuInSe₂ and clarified that this system has favorable d-orbital configurations around the Fermi level to achieve large interfacial PMA [4].

This work was partly supported by the Grant-in-Aid for Scientific Research (S) (Grant No. 16H06332) and by the ImPACT Program.