導電性酸化物を用いたオールセラミックスガスセンサの作製

Fabrication of all-ceramics gas sensor using conducting oxide

産総研¹, 名大理² 〇鶴田 彰宏¹, 伊藤 敏雄¹, 三上 祐史¹, 杵鞭 義明¹,

寺崎 一郎^{1,2}, 村山 宣光¹, 申 ウソク¹

AIST¹, Nagoya Univ.², ^oAkihiro Tsuruta¹, Toshio Itoh¹, Masashi Mikami¹, Yoshiaki Kinemuchi¹,

Ichiro Terasaki^{1,2}, Norimitsu Murayama¹, Woosuck Shin¹

E-mail: a.tsuruta@aist.go.jp

1. はじめに

ガスセンサのセンシング原理は様々ではあるが、 高感度かつ高速応答を実現するために高温での動 作が必要とされる場合が多く、センサの電極部材 やヒーター部材には耐環境性に優れた白金(Pt) が用いられる^[1]。ヘルスケアや燃焼モニタリング などの様々な場面で応用が期待されるガスセンサ は、IoT 社会の拡大に伴って搭載される機器の増 加が見込まれ^[2]、素子価格の低減がその普及に大 きく貢献すると期待される。

我々はこれまで、ガスセンサのような高温動作 型電子デバイスの低コスト化に向け、白金代替材 料として導電性酸化物 CaCu₃Ru₄O₁₂に着目し、そ の部材化プロセス開発を実施してきた^[3,4]。

本発表では、当該材料のデバイス適用性を検証 するために試作した、電極部材及びヒーター部材 として CaCu₃Ru₄O₁₂を用い全部材が酸化物からな る半導体式ガスセンサに関して報告する。

2. 実験方法

焼結助剤として 30vol.%の CuO 粉を混合した CaCu₃Ru₄O₁₂ 粉と有機溶剤を混錬して作製したペ ーストを、スクリーン印刷を用いて焼結アルミナ 基板上 $(3.0 \times 25 \times 0.3 \text{ mm}^3)$ の一方に櫛形電極、も う一方にヒーター形状で印刷し、1000°C で焼結し た。(Fig. 1 (a)) 櫛型電極上に Pt・Pd・Au をそれ ぞれ 1wt%担持した SnO₂ナノ粒子ペーストを薄く 乗せ 500°C で 12 時間焼成した。素子の性能評価を 行うために配線しSUS チューブを用いてハウジン グした。(Fig. 1 (b))

センシング性能評価は H_2 をターゲットガスと して、 O_2 濃度を 20vol.%に固定し、 N_2 と H_2 の混合 比を変化させて実施した。

3. 実験結果

印刷したヒーターに電流を印加し熱カメラを用いて発熱特性を確認した結果、650℃を上回る温度まで達することを確認した。また、数秒単位の急激な昇降温テストや500℃で一週間保持した後の発熱特性に劣化は確認されなかった。

Fig. 2 に H₂濃度 200~1000 ppm に対する、駆動 温度 400°C でのガス検知材料 SnO₂のセンサ抵抗変 化を示す。テストガスフロー中の温度安定時間が 不十分であることに起因すると考えられるベース 抵抗(空気中)のドリフトがあったが、ターゲッ トガスである H_2 濃度に依存して SnO_2 の抵抗変化 が確認できた。本研究で試作したセンサにおいて、 安定したヒーター発熱特性及び半導体式センサの 可燃性ガス応答の結果から、 $CaCu_3Ru_4O_{12}$ が Pt に 代わる導電性部材として十分に有用であると考え られる。

発表では導電性部材の微細構造や発熱特性の詳 細に関しても報告する。

Fig. 1 Photograph of (a) conducting oxide heater (back) and electrode (front), and (b) all oxide sensor.

Fig. 2 Sensor resistance change for various H_2 concentrations at 400°C.

参考文献

[1] T. Itoh, N. Izu *et al.*: Sensors **15** (2015) 9427-9437.

- [2] 第 63 回応用物理学会春季学術講演会 特別シンポジウム
 「Internet of Things を俯瞰する」2016年3月21日
- [3] A. Tsuruta et al.: Phys. Status Solidi A 214 (2017) 1600968.
- [4] A. Tsuruta et al.: Crystals 7 (2017) 213.

1.3