Room Temperature Operation of Porphyrin Protected Au Nanoparticle Single-Electron Transistor

Younsu Jung1, Pipit Uky Vivitasari1, Yoon Young Choi1, Yasuo Azuma1, Masanori Sakamoto2, Toshiharu Teranishi2 and Yutaka Majima1

1Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Japan

2Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan

E-mail: jung.y.ab@m.titech.ac.jp

Nanodevices such as single-electron transistors (SETs) have been studied extensively because of their potential merits such as low voltage operation, low power consumption and high-speed operation. However, for practical applications of SETs, it should be required to operate at room temperature. Towards a room temperature operation, the charging energy of the device needs to be higher than thermal energy \(k_B T \) (26 meV at 300 K). Chemically synthesized Au nanoparticles with few nanometers size as Coulomb island are good candidates for this purpose, since the size and shape of our nanoparticles can be well controlled with the size distribution of \(\pm 10\% \). Moreover, a ligand of porphyrin derivatives can give the rigid structure and availability of resistance control which show stable Coulomb blockade and Coulomb staircase at room temperature. Previously, we investigated this materials as Coulomb island for SET study and obtained the clear Coulomb staircase behaviors at room temperature1. The nanoparticle size of 1.4 nm showed the high charging energy of 235 meV that is more than 9 times larger than the thermal energy. However, more detailed clues are required to demonstrate clear working concept at room temperature of this SET. More stable structures need to be fabricated to get higher charging energy or rigid structures of SET.

In this study, we fabricated the SET based Sn-Porphyrin protected Au nanoparticles as Coulomb island based on electroless Au plated (ELGP) Pt nanogap electrodes. We observed clear Coulomb blockade and Coulomb staircase behavior at 9K and room temperature (Figure 1). We also report clear Coulomb oscillation at both 9K and room temperature (Figure 2), which indicate the room temperature operations of the SET.

This study was partially supported by MEXT Elements Strategy Initiative to Form Core Research Center; the Collaborative Research Project of Materials and Structures Laboratory, Tokyo Institute of Technology; the Collaborative Research Project of the Institute of the Chemical Research, Kyoto University (Grant 2017-76), and by BK Plus program, Basic Science Research (NRF-2014R1A6A1030419).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Experimental \(I_d-V_d \) characteristics of a Sn-Porphyrin protected Au nanoparticle SET at (a) 9 K, and (b) RT.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Experimental \(I_d-V_g \) characteristics of the same SET (a) 9 K, and (b) RT.}
\end{figure}