平ロール圧延によって作製された(Ba, K)Fe₂As₂銀シース線材の 磁界中磁気顕微観察

In-field Magnetic Microscopy for (Ba, K)Fe₂As₂ Tape Fabricated by Flat Rolling Process

 九大¹,中国科学院²
 ^O呉 澤宇¹,玉江 航稀¹,モハン シャム¹,東川 甲平¹, 井上 昌睦¹,黄河²,姚超²,馬 衍偉²,木須 隆暢¹
 <sup>Szeyu Wu¹, Koki Tamae¹, Shyam Mohan¹, Kohei Higashikawa¹, Masayoshi Inoue¹, He Huang², Chao Yao², Yanwei Ma², Takanobu Kiss¹
</sup>

E-mail: kiss@sc.kyushu-u.ac.jp

1. はじめに

鉄系超伝導材料は、臨界電流密度の外部磁界依存性に優 れており、また磁気異方性も小さいことから、高磁界マグネット への適用が期待されている。一方、マグネット応用には材料の 線材化が必須であり、近年(Ba,K)Fe2As2線材(以後 Ba-122線 材と略記)に関してホットプレス法によって実用的な臨界電流 密度が得られるに至っている[1]。一方、ホットプレス法は応用 に不可欠となる長尺線作製への適用が簡単ではなく、臨界電 流密度の空間均一性についても課題を抱える可能性を前回 に報告した[2]。そこで本研究では、長尺線の作製にも適用可 能な平ロール圧延による Ba-122 線材に対して、局所臨界電 流分布の評価を行った。

2. 実験方法

測定試料は、Powder-in-tube (PIT) 法と平ロール圧延によっ て作製された Ba-122 線材であり、その写真をFig.1に示す。 同試料は、5 mm 幅の線材を走査型ホール素子顕微鏡 (SHPM)の観測スペースに合わせて長さ11 mm に切り出した ものである。同試料を測定温度に冷却後、外部磁界の印加に よって磁化させ、外部磁界を一定に保った状態で試料の直上 の磁界分布を計測した。また、測定した磁界分布に対応する 磁化電流分布を評価することにより、同試料内の局所臨界電 流分布を評価した。

3. 結果·考察

測定温度5Kにおいて得られた結果をFig.2に示す。基本 的に理想的なルーフトップパターンが得られており、本試料が 空間均一性に優れるポテンシャルを有することが示されている。 また、異なる外部磁界において同様の分布が得られているこ とから、この空間分布はピンニング特性のばらつきというよりは フィラメント構造によるものと推測される。臨界状態モデルによ れば、Fig. 2(b)に示す磁化電流は臨界電流密度で流れるため、 長手方向のそれぞれの位置(x)で幅方向に積分することによ り、局所臨界電流(Ic)を求めた。この値を線材の長手方向に 対してプロットしたものを Fig. 3 に示す。長手方向位置 x < 2.4 mm と x > 8.4 mm で小さな値となるが、これは Fig. 2(b)からわ かるように幅方向に周回する磁化電流の影響によるものであ る。すなわち、実用上重要となる長手方向の Ic 分布は 2.4 mm < x < 8.4 mm で得られていると考えられ、顕著な欠陥のない試 料であることがわかる。この区間の平均値を代表的な線材の 臨界電流と考え、ホットプレス法による試料と比較したものを Fig. 4 に示す。臨界電流の値や外部磁界依存性はホットプレ ス法には及ばないものの、長尺線の作製にも適用可能な本手 法によって、顕著な欠陥もなく、ホットプレス法と同等のオーダ ーの臨界電流値を有するレベルにあることが明らかとなった。

謝辞

本研究は、JSPS と中国科学院(CAS)との二国間交流事業 (共同研究)による支援を得た。

参考文献

H. Huang et al., Supercond. Sci. Technol. 31 (2018) 015017.
 木須ほか, 2017 年第78回応用物理学会秋季学術講演会.

Fig. 1. Photograph of the sample set on the in-field SHPM.

Fig. 2. Experimental results obtained by the SHPM at 5 K with the external magnetic fields with 2 and 4 T: (a) perpendicular component of the magnetic field shown by subtracting the background field and (b) magnetization current distribution.

Fig. 4. Critical current vs. external magnetic field properties obtained at 5 K by the in-field SHPM. The results of the rolled sample are compared those of a hot-pressed sample.