Ni めっき配向 Cu テープ上に Nb ドープ SrTiO₃ および Nb ドープ TiO₂を中間層に配置した YBCO 線材の作製 Fabrication of YBCO Films on Ni electroplated Cube-Textured Cu Tapes

via Conductive Nb-doped SrTiO₃ and TiO₂ Buffer Layers

京大院エネ科¹, JST- ALCA², 電中研³: [°]山口滉太¹, 廣瀬勝敏¹, 前田啓貴¹, 堀井滋^{1,2},

一瀬中^{2,3}, 土井俊哉^{1,2}

Kyoto Univ.¹, JST-ALCA², CRIEPI³: ^oK. Yamaguchi¹, K. Hirose¹, H. Maeda¹, S. Horii^{1,2},

A. Ichinose^{2,3}, T. Doi^{1,2}

E-mail: yamaguchi.kota.44e@st.kyoto-u.ac.jp

1. はじめに

3. 実験結果

現在市販されている REBa₂Cu₃O₇ (REBCO)線材 は金属テープ基材上に、REBCO と反応性の低い 複数の酸化物中間層と REBCO を順にエピタキシ ャル成長させた構造を有する。この中間層は絶縁 性であるため、安定化層の形成のために Ag およ び Cu を REBCO 層の上に積層させている。これ が、REBCO 線材の高い材料コストの一因である。 我々は、安価な YBCO 超伝導線材の開発を目 的とし、金属基材に{100}<001>集合組織をもつ Cu および導電性中間層の利用を検討している[1, 2]。最近、配向 Cu テープ上に導電性中間層とし

て SrTi_{0.75}Nb_{0.25}O₃ (Nb-STO)および Ti_{0.94}Nb_{0.06}O₂ (Nb-TiO₂)の積層を試み、Nb-STO に加え Nb-TiO₂ も 2 軸配向することを示した[3]。現在、YBCO 層の高 J_c化や、安定化の役割も担う Cu テープへの電流回避の確認などの課題に取り組んでいる。

本研究では基材に Ni めっきした配向 Cu テー プ、導電性中間層には基材や YBCO 層と構造的 整合性の高い Nb-STO と基材への酸素拡散防止 が期待できる Nb-TiO₂を用い、成膜条件と配向性 の関係について調べた。

2. 実験方法

金属基材として Ni めっき配向 Cu テープに SUS316 を貼り合わせた基材(Ni/Cu/SUS)を用い た。Nb-STO 層および Nb-TiO₂ 層の作製には Nd:YAG レーザー、YBCO 層の作製には KrF エキ シマレーザーを光源とするパルスレーザー蒸着 法 (PLD 法) を用いた。Ni/Cu/SUS 基材上に SrTi_{0.41}Nb_{0.59}O₃ ターゲットを用いて Nb-STO を 330 nm 作製した。基板温度(T_s)は 750°C、雰囲気 は $Ar+H_2$ 、 3.0×10^{-3} Pa とした。次にこの Nb-STO/Ni/Cu/SUS 上に Ti_{0.94}Nb_{0.06}O₂ターゲット を用いて Nb-TiO₂を 50 nm 作製した。 T_s は 460°C、 雰囲気は Ar+O₂ 5.0×10⁻³ Pa とした。更にこの Nb-TiO₂/Nb-STO/Ni/Cu/SUS 上に SrTi_{0.95}Nb_{0.05}O₃ ターゲットを用いて Nb-STO を 11 nm 作製した。 T_s は750°C、雰囲気はAr+H₂3.0×10⁻³Paとした。 更にこの Nb-STO/Nb-TiO₂/Nb-STO/Ni/Cu/SUS 上 に Y₀₉BCO ターゲットを用いて YBCO を 200 nm 作製した。 T_sは 740℃、雰囲気は O₂ 35 Pa とし た。

Fig. 1 に Nb-STO 薄膜上に 99 %Ar+1 %O₂、 $P(O_2)=5.0\times10^3$ Pa の雰囲気で 460°C で成膜した Nb-TiO₂薄膜 (アナターゼ相)の(101)極点図、Fig. 2 に Nb-STO/Nb-TiO₂/Nb-STO/Ni/Cu/SUS 上に O₂、 $P(O_2)=35$ Pa の雰囲気で 740°C で成膜した YBCO 薄膜の(102)極点図を示す。Fig. 1 では a 角(あお り角)が 70°のときに、Fig. 2 では 55°のときに、 β 角(回転角)方向に 90°毎に 4 つの回折ピーク が現れ、Nb-TiO₂薄膜、YBCO 薄膜はともに 2 軸 配向していた。当日は、Nb-TiO₂の電気抵抗率測 定や YBCO の J_c 測定の結果についても報告する 予定である。

Fig. 1 (101) Pole figure of Nb-TiO₂ layer grown at 460° C in $P(Ar+O_2)=5.0\times10^{-3}$ Pa on Nb-STO/Ni/Cu/SUS.

Nb-STO/Nb-TiO₂/Nb-STO/Cu/SUS.

参考文献

- [1] 土井ら、応用物理 **85** (2015) 419.
- [2] T.Doi et al., Materials Trans, **58** (2017) 1493.
- [3] 山口ら、H29 秋季応用物理学会 6a-PB1-19.