クラスター化原子置換型人工ピンによるY系超電導体磁場特性改善

J_c improvement of YBa₂Cu₃O_{7-x} in magnetic field by Clustered Atom-Replaced Pins

東芝 R&D¹, JFCC², NIMS³

⁰石井 宏尚¹, 荒木 猛司¹, 林 真理子¹,

加藤 丈晴², 横江 大作², 吉田 竜視², 西島 元³, 松本 明善³

Toshiba R&D¹, JFCC², NIMS³

^OH. Ishii¹, T. Araki¹, M. Hayashi¹, T. Kato², D. Yokoe², R. Yoshida², G. Nishijima³, A. Matsumoto³ E-mail: hirotaka2.ishii@toshiba.co.jp

RE系高温超電導線材 REBa₂Cu₃O_{7-x}(REBCO; R=Y,希土類元素)は高い臨界温度と臨界電流 密度(J_c)を示し、送電ケーブルや超電導コイル への実用化が期待されている。しかし磁場中で は J_cが大きく低下するため、人工ピンによる 磁場中特性改善が検討されている。本研究では 特性劣化の小さい均一な線材が作製可能な TFA-MOD 法で作製した YBCO 薄膜中に PrBCO を形成し、それをクラスター化により 局在化させることでクラスター化原子置換型 人工ピン(Clustered Atom-Replaced Pins; CARP) として機能させることを試みた。

CARP は PrBCO が YBCO の一部を置換する 形で同一のペロブスカイト構造を形成した後、 Pr³⁺が酸化側に価数変化することで人工ピン として機能すると想定している。YBCO 薄膜中 に PrBCO のみを分散させた場合では人工ピン としてはサイズが小さいため、クラスター化で 人工ピンサイズの拡大を試みた。Y サイトにイ オン半径が大きい元素として Pr+Sm、小さい元 素として Tm を一部置換し、CARP 形成を試み た。PrとYのサイズ違いを緩和するためPr+Sm として平均イオン半径を縮小した。Fig.1A, 1B に a/b 面内 45 度回転させた HAADF 観察像を 示す。Fig.1D に示す Fig.1B の強度プロファイ ルから CARP が存在するとみられる領域では Ba-Ba間拡大が確認された。Prの価数変化によ るイオン半径縮小とCuO2面の酸素数増加によ り PrBCO の c 軸長が縮小した結果、Ba-Ba 間 隔拡大が観測されたと考えており、CARP 形成 が示唆される。

現時点で確認された CARP は *a/b* 軸方向の広 がりが約 10 nm で、*c* 軸方向の厚みが 2.4 nm で あると推定される。まだサイズは大きいものの 合計 8%となる CARP を YBCO 薄膜中に形成し、 *J_c-B-T* 測定を実施した。Fig.2 に示す結果から、 基準となる YBCO に比べ主に低温・低磁場側 で特性が改善していることが確認された。詳細 については当日報告する。

Fig.1 (A) High-angle annular dark-field image of normal area. (B) High-angle annular dark-field image of CARP area. (C) Line profile of signals of Fig.1A.(D) Line profile of signals of Fig.1B.

Fig.2 Critical current densities of YBCO with CARP and without CARP at 30 – 77 K in magnetic field.