Supercontinuum generation in tantalum pentoxide based optical waveguide
Chung-Lun Wu1,*, Chao-Wei Liu1, Pin-Shuo Hwang1, Chin-Yu Liu1, Min-Hsiung Shih1,2,3, Ann-Kuo Chu1, and Chao-Kuei Lee1

1 Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan
2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
3 Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan

*E-mail: f97941087@gmail.com

Tantalum pentoxide (Ta2O5) is a large bandgap material, which shows ultralow linear and nonlinear absorption loss in visible to infrared region. Such optical property enables it to realize low loss optical waveguide platform [1]. Recently, Ta2O5 has been widely utilized to demonstrate nonlinear waveguide applications due to its huge optical nonlinearity. For instance, the four-wave-mixing, third-harmonic generation and self-phase modulation have been realized in Ta2O5 waveguide structures [2-4]. However, seldom work reports the supercontinuum generation in Ta2O5, especially in the visible region.

In this work, the supercontinuum generation has been demonstrated in a 5-mm-long Ta2O5 channel waveguide. The Ta2O5 film is deposited by using RF sputtering technique. After deposition, the e-beam lithography and reactive ion etching are utilized to fabricate the waveguide structure. By injecting a 100-fs pulse laser at central wavelength of 1-um, the output spectrum of Ta2O5 waveguide shows an octave spanning (at -30dB). In addition, the strong visible light at 644 nm is observed in the supercontinuum spectrum, which is attributed to the dispersive wave generation. The position of such dispersive wave can be tunable by changing the waveguide dimension. By increasing the waveguide width from 1500 nm to 2000 nm, the strong visible peak is blue-shifted from 644 nm to 536 nm. Our primary result shows that Ta2O5 has great potential in developing visible to infrared broadband light source, which can be applied in optical coherence tomography and frequency metrology.

Reference