Nb Additive Incorporation for Enhanced Z-Scheme Photocatalytic Activity in BiVO₄ Tsukuba University¹, Konan University², Tokyo Instruments³ ° Mikas Remeika¹, Takeaki Sakurai¹, Shigeru Ikeda², Christian Budich³ E-mail: remeika@bk.tsukuba.ac.jp

Photocatalysis is a promising pathway to direct utilization of solar energy for chemical fuel production. A major challenge is development of low cost, stable active materials that utilize a large fraction of the solar spectrum. $BiVO_4$ is a promising candidate material that acts as oxidizing species in a Z-scheme water splitting reaction, capable of utilizing visible light (band gap 2.4 eV). In this work we demonstrate enhanced water-splitting performance of $BiVO_4$ by incorporation of Zr additive and compare the physical mechanism to that of Mo additive that is known to enhance performance of $BiVO_4$.

 $BiVO_4$ powder was synthesized via a reaction of NH₄VO₄ and $Bi(NO_3)_3$ in an acidic solution, with precipitate annealed at 500°C. Doped BiVO₄ was produced by incorporating 1% molar fraction of Zr or Mo during synthesis. Water splitting reaction was conducted in 10mM AgNO₃ aqueous solution and 2x increase of photocatalytically produced oxygen was observed for both Mo an Zr-doped BiVO₄ vs. pure BiVO₄.

A key question in the initial investigation is whether Zr additive acts to change bulk properties or surface properties of BiVO₄. Raman scattering measurements indicated (Figure 1) that effect of 1% Zr additive is qualitatively similar to 1% Mo additive, but Zr-doping results in stronger shifts of the peaks characteristic of monoclinic BiVO₄ (826, 365, and 333 cm⁻¹). The shift of VO₄ symmetric stretching mode (826 cm⁻¹) is interpreted as substitution by Zr or Mo on V site.

Time resolved photoluminescence (TRPL) measurements showed a decrease of photoexcited carrier lifetime in Mo- and Zr-doped samples, indicating change in bulk electrical properties.

In summary, we report observation of improved water-splitting photocatalytic activity in BiVO₄ via Zr additive incorporation. Raman and TRPL measurements indicate that Zr is likely incorporated into the lattice rather than confined to the surface of BiVO₄ grains.

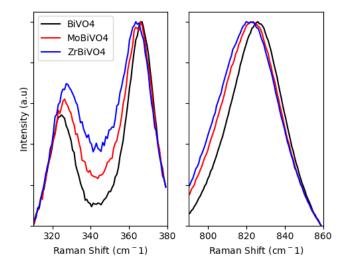


Figure 1 Normalized Raman peaks for BiVO₄ (black), Mo-doped BiVO₄ (red), and Zr doped BiVO₄ (blue).