Impact of passivation treatments on channel mobility for p-channel 4H-SiC MOSFETs

U. Tsukuba.¹, AIST² °Xingyan Žhou¹, Dai Okamoto¹, Tetsuo Hatakeyama², Mitsuru Sometani², Shinsuke Harada², Yuki Karamoto¹, Xufang Zhang¹, Noriyuki Iwamuro¹, and Hiroshi Yano¹ E-mail: s1765132@s.tsukuba.ac.jp

1. Introduction

Recently, p-channel 4H-SiC MOSFETs have attracted much attention in complementary inverter and CMOS-IC applications [1]. However, their practical use is impeded by the high channel resistance [1]. Therefore, it is necessary to analyze the mechanism of the low channel mobility. However, there are only a few reports on channel mobility for p-channel 4H-SiC MOSFETs [2, 3]. To understand the channel carrier transport mechanisms, the Hall-effect measurement for the channel region of MOSEFTs is effective because the field-effect mobility ($\mu_{\rm FE}$) suffers from the uncertainty in channel carrier concentration [4]. In this work, we evaluated the impact of passivation treatments on both the field-effect mobility and mobility for p-channel 4H-SiC channel Hall MOSFETs.

2. Experimental methods

P-channel MOSFETs were fabricated on (0001) Si face 4H-SiC n-type epitaxial layers on an n-type substrate. The net donor concentration of the nitrogendoped n-epilayer was 1×10^{16} cm⁻³. The gate oxide thickness formed by dry oxidation was ~50 nm. Postoxidation annealing (POA) was performed in nitric oxide (NO) ambient. NO-POA treatments were conducted at 1250 °C for 10, 30, 60, and 120 min. Hall-effect measurements were conducted by using the MOS-gated van-der-Pauw structures [4]. The strength of the applied magnetic field was around 0.5 T.

3. Results and discussion

The μ_{FE} of the four p-channel 4H-SiC MOSFETs with NO-POA is shown in Fig. 1. From Fig. 1, it can be seen that with increasing the NO-POA time, the μ_{FE} decreases. The maximum μ_{FE} was obtained with NO-POA for 10 min. It should be noted that the samples

without POA and with wet-POA processes were also fabricated and measured. The sample without POA process did not turn on at the gate voltage of -20V; the wet-POA samples obtained almost the same fieldeffect mobility with NO10 sample (both not shown here). Figure 2 shows the Hall mobility ($\mu_{\rm H}$) of the four NO-POA samples. It can be observed that the $\mu_{\rm H}$ was reduced by increasing NO-POA time in the high negative gate voltage regions where channel carrier concentration is high. Figure 3 shows the threshold voltage $(V_{\rm th})$ as a function of nitridation passivation time. With increasing the NO-POA time, the absolute value of Vth decreases first and then increases. The decrease in the absolute value of $V_{\rm th}$ at the initial stage from 10 to 30 min is attributed to the nitridation passivation of interface traps. However, when increasing the NO-POA over 30 min, more nitrogen atoms are incorporated into the channel and they act as donors [5]. The increase in the donor concentration would lead to the increase in the scattering center of holes, thus resulting in the decrease in the Hall mobility.

Acknowledgments

This work was supported by the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Nextgeneration power electronics" (funding agency: NEDO) and JSPS KAKENHI Grant Number JP16H04326.

References

- [1] J. An et al., Tech. Dig. IEDM 2016, 10.7 (2016).
- [2] S. Katakami et al., Mat. Sci. Forum. 717-720, 709 (2012).
- [3] S. Katakami et al., Mat. Sci. Forum. 740-742, 958 (2013).
- [4] T. Hatakeyama et al., Appl. Phys. Express 10, 046604 (2017).
- [5] R. Kosugi et al., Appl. Phys. Lett. 99, 182111 (2011).

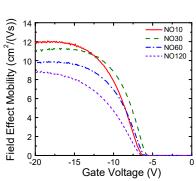


Fig. 1. Field-effect mobility of the p-channel 4H-SiC MOSFETs with NO-POA for different times.

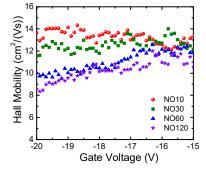


Fig. 2. Hall mobility of 4H-SiC MOSFETs with NO-POA for different times.

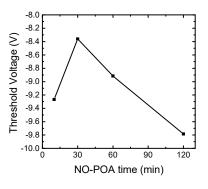


Fig. 3. Threshold voltage of the p-channel 4H-SiC MOSFETs with NO-POA for different times.