The Spin Polarized Electronic Structure of Metal Overlayers on Magneto-Electric Cr₂O₃

^ADept. of Phys. and Astron., University of Nebraska-Lincoln, U.S.A., ^BSchool of Basic Sciences, Indian Insti. of Tech., India, ^CGrad. School of Sci., Hiroshima University, Japan, ^DHiroshima Synchrotron Radiation Center, Hiroshima University, Japan, ^ENCEM, Lawrence Berkeley Nat. Lab., Berkeley, U.S.A.

^oTakashi Komesu^A, Shi Cao^A, Renu Choudhary^{A,B}, Pankaj Kumar^B, Priyanka Manchanda^A, Kazuaki Taguchi^C, Taichi Okuda^D, Koji Miyamoto^D, Ralph Skomski^A, Gong Chen^E, Arti Kashyap^B, and Peter A. Dowben^A

E-mail: tkomesu2@unl.edu

Perpendicular exchange-bias structures, based on the antiferromagnetic and magneto-electric $Cr_2O_3(0001)$, have drawn considerable attention, in part because of potential applications in voltage controlled spintronics. The boundary spin polarization at the surface of the magnetoelectric $Cr_2O_3(0001)$, can isothermally voltage-controlled to provide be perpendicular voltage-controlled exchange-bias in an adjacent ferromagnet [1,2]. This means that the adjacent ferromagnet is typically chosen with perpendicular magnetic anisotropy, e.g. Co-Pd or Co-Pt multilayers. Recently, scalable magneto-electric magnetic random access memory, based on the anomalous Hall effect that occurs in Pt overlayers on Cr_2O_3 has been proposed [3,4]. But this latter memory device concept depends on an induced polarization in the Pd or Pt overlayer on $Cr_2O_3(0001)$.

In this presentation, we illustrate the induced polarization in several different overlayers, such as Pt, Pb, and Co, on the top of $Cr_2O_3(0001)$. The interaction between the $Cr_2O_3(0001)$ surface and an overlayer can be quite complex [5,6]. For example, we were recently able to show that the antiferromagnetic exchange coupling between the surface Cr ions of magneto-electric $Cr_2O_3(0001)$ and Co atoms in an overlayer, shows significant canting, as seen in Figure 1, and demonstrated by spin polarized photoemission in Figure 2.

- [1] He X, et al. Nat. Mater. 9 (2010) 579-85
- [2] Cao Shi, et al. New J. Phys. 16 (2014) 073021
- [3] Kosub T, et al. Phys. Rev. Lett. 115 (2015) 097201
- [4] Kosub T et al. Nature Communications 8 (2017) 13985
- [5] Choudhary R, et al. Europhysics Letters 115 (2016) 17003
- [6] Ashida T, et al. Appl. Phys. Lett. 106 (2015) 132407

Figure 1: The micromagnetism of the spin canting in the Co/Cr_2O_3 system [5]. The inset compares magnetic force microscopy images of Co on Cr_2O_3 and Co on Al_2O_3 : the more pronounced contrast in Co/Cr_2O_3 is caused by the exchange interaction to the antiferromagnetic substrate. In the complete absence of a normal component of magnetism, the magnetic force microscopy images would be featureless [5].

Figure 2: The spin-polarized photoemission spectra for 10 nm Co on top of Cr_2O_3 : (a) measured in-plane spin polarization and (b) perpendicular (out-of-plane) spin polarization, acquired at HiSOR [5].