高感度超解像光熱顕微イメージング法の開発

Development of High Sensitivity Photothermal Microscopic Imaging 電通大脳科学 ¹、東京理科大理 ²、順天堂大医 ³、和歌山大システムエ ⁴、オリンパス ⁵ O小林 孝嘉 ^{1,2}、中田 和明 ^{1,2}、徳永 英司 ²、鶴井博理 ³、宮崎 淳 ⁴、川角 洸史 ⁵ Univ. of Electro-Communications ¹、Tokyo Univ. Science²、Juntendo Univ. ³、Wakayama Univ. ⁴、Olympus ⁵、 Takayoshi Kobayashi ^{1,2}、Kazuaki Nakata ^{1,2}、Eiji Tokunaga ²、Hiromichi Tsurui ³、Jun Miyazaki ⁴、Koshi Kawasumi ⁵

E-mail: kobayashi@ils.uec.ac.jp

ポンプ-プローブ顕微鏡の一種である光熱顕微法(Photothermal microscopy, PTM)はポンプ光による誘起屈折率変化をプローブ光で観測する顕微鏡システムであり、超解像能を有する[1]。我々はこれまでに光源として安価なレーザーダイオードを用いた新しい光熱顕微イメージング法として、逆瞳孔フィルター、ガルバノミラー、空間分割バランス検出を導入し高感度、高解像かつ高速なイメージングを紹介した。本報告では非線形検出を用いた高分解イメージングを報告する。

ガルバノミラーを用いた走査顕微鏡でポンプ光強度の2乗に比例する2次の非線形信号を検出することでプローブ光、ポンプ光の波長(各々638、405nm)から計算される回折限界値からそれぞれ61%、42%の解像度向上が見られた。20nm 金微粒子のイメージングで得られた解像度は2次の非線形検出で160nm、通常の線形検出では270nmであった。ヘマトキシリン-エオシン(HE)で核を青藍色 (H) に、細胞質・線維類や赤血球をピンク色(E)に染色した生物試料に対するイメージングを行った。その結果線形検出に比べ約20%の解像度の向上が得られた。またピクセル時間、フレーム(300x300 ピクセル)時間はそれぞれ50 μ s、4.5sであり、ガルバノミラーを利用した高速イメージングの特長を兼ね備えている。レーザーダイオードを使用して構築されており、生命科学および医学等広い分野において有用である。

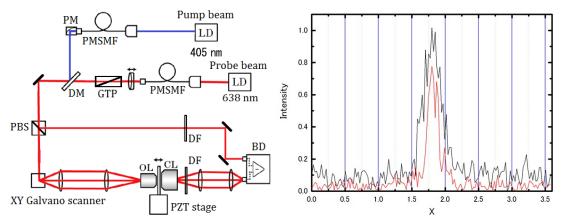


Fig.1 (left) Space-division photothermal microscope (PTM) system_o

Fig.2 (Right) Intensity profile curves of the GNP obtained by linear detection scheme (Black) and nonlinear detection scheme (Red).

[1] J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, Opt. Lett., 40, 479 (2015).