表面増強ラマン動的光散乱による金属コロイド凝集過程の解明

Elucidation of metal colloid aggregation process by surface enhanced Raman dynamic light scattering.

○(M1)瀬尾 健¹, 岩井 俊昭¹, 長谷川 達生², 荒井 俊人², 平川 友也²
(1.東京農工大学生物システム応用科学府, 2.東京大学工学系研究科)

 ^o Takeshi Seo ¹, Toshiaki Iwai ¹, Tatsuo Hasegawa ², Syunto Arai ² and Yuya Hirakawa ²
(1.Tokyo Univ. of Agri. & Tech., BASE 2.Univ. of Tokyo Department of Applied Physics) E-mail: tiwai@cc.tuat.ac.jp

1. はじめに

銀ナノ粒子インクは、インクジェット印刷によって金属配線を印刷する技術として応用が期待 されている.金属粒子コロイドがインクとして利用されるためには、溶液内に粒子が安定に分散 されている必要がある.そのためには、金属粒子の表面が保護膜によって修飾される必要がある. 金属インクは、高い分散性を有するが、インク内で徐々に凝集が進行するため、金属粒子の安定 な分散と均一な粒子径の評価が必要である.

我々は、動的光散乱法¹⁾²⁾による粒径計測とラマン分光法³⁾による構造・組成などの評価を融合 させたラマン動的光散乱法⁴⁾の開発を行ってきた.本研究では、ラマン動的光散乱法を用いて、金 属コロイドの保護膜の物質を同定しながら粒径計測を行い、分散状態の評価を目指す.

2. 実験

Fig.1 に、本研究で用いる実験系を示す. 波長 532 nm の Nd:YV04 レー ザを励起光源として使用する. 光源より出射した光は、ビームスプリッ タを介して対物レンズにより試料に集光照射される. 試料からの後方散 乱光は、再度同じ対物レンズを経てレンズにより検出ファイバ端に結像 される. ビームスプリッタ後方に配置したラマンフィルタにより、試料 を構成している特定の分子の振動から発現するラマン散乱光の波長のみ を抽出する. この光は光電子増倍管により電気信号に変換されたのち, PC で相関解析される.

3. 結果

ラマン動的光散乱光の測定を行う前段階として, ラマンスペクトルの 計測を行った.Fig.2に銀ナノ粒子インクを測定した結果を示す.波長 570 nm から 580 nm にかけて強度が増大していることが確認できる, これは, 銀粒子の保護膜として修飾されたアルキルアミンによって発現する表面 増強ラマン散乱光である.ラマン分光法によって確認できた波長 580 nm のラマン散乱光を用いて粒子径計測を行った.Fig.3 にラマン散乱光強度 の自己相関関数の一例を示す.プロット点は実験値,実線は数値フィッ ティングした曲線である.この実線で示される自己相関関数から相関時 間を決定し,粒径を算出する.本報告ではラマン動的光散乱法を用いて, 時間経過によって凝集する銀ナノ粒子インクについて検討を行う.

参考文献

- 1) B.J. Berne and R. Pecora: Dynamic Light Scattering, Dover Publications, New York, 2000.
- 2) 柴山充弘:光散乱法の基礎と応用,第2版,講談社,東京,pp.71-109(2015).
- 3) 濱口宏夫, 岩田耕一: ラマン分光法, 第1版, 講談社, 東京(2015).
- 4) A. Barbara, F. Dubois, P. Quemerais and L. Eng; Opt. Express **21**,15418 (2013).

Fig.1 Experimental system.

Fig. 3 Autocorrelation functions of the Raman scattering intensity at 580 nm.