Investigation of spin-transfer properties in ferrimagnetic Mn₄N nanowires

T. Gushi^{1*}, L. Vila², J. P. Attané², O. Fruchart², A. Marty², S. Pizzini³, J. Vogel³, F. Takata¹, A. Anzai¹

and T. Suemasu¹

1.Inst. of Appl. Phys., Univ. of Tsukuba, Japan, 2. Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, INAC, SPINTEC, France, 3. Univ. Grenoble Alpes, CNRS, Institut Néel, France

E-mail: bk201011030@s.bk.tsukuba.ac.jp

[Introduction] We have investigated Mn₄N ferrimagnetic thin films for the application to current induced domain wall motion (CIDWM). Made of only abundant and light elements, Mn₄N has a strong perpendicular magnetic anisotropy with $K_{\rm u}$ of 10⁵ J/m³ and small $M_{\rm S}$ of 110 kA/m [1]. We have already shown the prominent properties of domain wall (DW) in Mn₄N films grown on SrTiO₃ (001) with millimeter domain sizes [2]. So Mn₄N appears as a promising candidate to investigate CIDWM.

[Experiment] 10-nm-thick Mn₄N film was grown on SrTiO₃(001) substrate by molecular beam epitaxy, followed by fabrication process to 0.2-2- μ m-wide wires. Each sample consists of two Hall crosses, a notch to pin the DW between crosses, and a nucleation pad on the left side of the wire shown as inset in Fig. 1, so that the DW always comes from left. We measured the coercive field *H*_C by Hall measurement under various direct current (DC) offsets *j*_{DC}. After pinning a DW at the notch, we injected the DC into the Mn₄N wire and showed that the DW can be moved without magnetic field assistance.

[Result and discussion] Figure 1 shows the j_{DC} dependence of H_C at the left/right Hall crosses of 1µm-wide Mn₄N wire. Only positive currents affect strongly H_C . The analysis of this asymmetric behavior indicates the H_C increment is caused by STT, with a very large efficiency of 7.7×10^{-12} Tm²/A. In addition, by injecting DC of 60 GA/m², we succeeded in trapping the DW at the notch. Figure 2 presents the Hall voltage of left cross. After a DC injection over 120 GA/m², the Hall voltage indicates DW motion towards the middle of the left cross. Preliminary experiments show pure CIDWM speed above 200 m/s at 500 GA/m².

[Acknowledgement] This work was financially supported in part by JSPS (No. 26249037, 16J02879).

Figure 2 Hall voltage of left cross with sweeping DC.

[References]

- 1) K. Kabara et al., J. Appl. Phys. 117, 17B512 (2015).
- 2) Ext. Abstr. 61st JSAP Spring Meet., 2014, [5a-C18-6].