Dzyaloshinskii-Moriya interaction in an antiferromagnet/ferromagnet heterostructure CSRN¹/RIEC²/CSIS³/CIES⁴/WPI-AIMR⁵, Tohoku University

°S. DuttaGupta ^{1,2}, T. Kanemura ², R. Itoh ², A. Kurenkov ², C. Zhang^{2,3}, S. Fukami¹⁻⁴, & H. Ohno¹⁻⁵

E-mail: sdg@riec.tohoku.ac.jp

Antiferromagnet (AFM)/ferromagnet (FM) heterostructures with spin-orbit interaction are perceived to open new opportunities for digital and analogue spintronic applications [1-3]. In addition to spin-orbit torques (SOTs) generated by an in-plane current, the asymmetry of the stack structure with the spin-orbit interaction results in an interfacial Dzyaloshinskii-Moriya interaction (DMI). The presence of DMI entails chirality of domain wall (DW) and assists magnetization reversal [4]. A quantitative evaluation of DMI is crucial for understanding of magnetization reversal in these heterostructures. Here, we study AFM PtMn thickness (*t*_{PtMn}) dependence of DMI in a PtMn/[Co/Ni] system using two methods, a SOT-driven DW motion and a bubble expansion technique, and compare the results to a reference Pt/[Co/Ni] system.

The heterostructures used in this study are Ta (4)/ Pt (2)/ PtMn ($0 \le t_{PtMn} \le 5$)/ Pt (0.4)/ [Co (0.3)/ Ni (0.6)]₂ /Co (0.3)/ MgO (1.5)/ Ru (1) (thickness in nm). Figure 1(a) shows the in-plane magnetic field (H_X) dependence of current-induced DW motion at two different current densities (J) for PtMn(3)/[Co/Ni] structure. Both up-down $(\uparrow\downarrow)$ and down-up $(\downarrow\uparrow)$ DWs move in the direction of J, signifying SOT-driven DW motion. The horizontal intercept indicates the presence of DMI. Subsequently, DMI strength (given by DMI constant D) have been investigated from field-driven bubble expansion. The obtained results indicate right-handed chirality of DWs at PtMn/[Co/Ni] interface. The observed chirality is opposite, and the magnitude is one order of magnitude smaller compared with the DWs at archetype Pt/[Co/Ni] interface [5]. Moreover, the obtained DMI strength at PtMn/[Co/Ni] interface is enhanced with the increase of t_{PtMn} as shown in Fig. 1(b). The obtained sign and strength of D for the PtMn/[Co/Ni] structure is presumed to be related to the electronic

Fig. 1: (a) ν vs H_X at two different $J (= 6.4 \times 10^{11} \text{ A/m}^2 \text{ for squares}$ and $7.4 \times 10^{11} \text{ A/m}^2$ for circles) for $\uparrow \downarrow$ and $\downarrow \uparrow$ configuration for PtMn(3)/[Co/Ni]. (b) t_{PtMn} dependence of D obtained from two methods.

structure and AFM spin ordering over the PtMn interface. These findings offer significant insight for design of spintronic devices with AFM/FM heterostructures.

A portion of this work was supported by the ImPACT Program of CSTI, JST-OPERA, and JSPS KAKENHI 17H06093 and 17H06511.

[1] S. Fukami et al., Nature Mater. **15**, 535 (2016). [2] Y.-W. Oh et al., Nature Nanotech. **11**, 878 (2016). [3] W. A. Borders et al., Appl. Phys. Express **10**, 013007 (2017). [4] S. Emori, et al., Nature Mater. **12**, 611 (2013). [5] S. DuttaGupta et al., Appl. Phys. Lett. **111**, 182412 (2017).