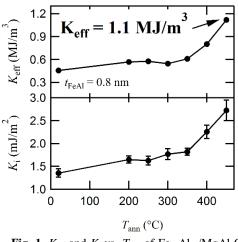
Large interfacial perpendicular magnetic anisotropy

in epitaxial Fe₈₀Al₂₀/MgAl₂O₄ heterostructures

¹NIMS, Tsukuba; ²University of Tsukuba, Tsukuba


[°]Thomas Scheike¹, Hiroaki Sukegawa¹, Xiandong Xu¹, Kazuhiro Hono^{1,2} and Seiji Mitani^{1,2}

E-mail: Scheike.thomas@nims.go.jp

Large perpendicular magnetic anisotropy (PMA) is a key requirement for magnetic tunnel junction (MTJ) based memory devices. PMA at ferromagnet (FM)/oxide interfaces is generally used to compensate thermal instabilities arising with the downsizing of MTJs. Recently, strong PMA has been reported in Co₂FeAl/MgAl₂O₄(001) heterostructures [1]. Microstructure investigation revealed large PMA in the structure that was attributed to a reduced lattice strain due to the use of MgAl₂O₄ and the effect of strengthening of the Fe-O hybridization at the interface due to diffusion of Al into the barrier [2]. In this study, we investigated the interfacial PMA using a Fe-Al alloy instead of Co₂FeAl. We found enhanced effective PMA energy K_{eff} up to 1.1 MJ/m³ in Fe₈₀Al₂₀ in contact with an MgAl₂O₄ barrier.

The following structures were deposited on an MgO(001) single crystal substrate using a magnetron sputtering system with a base pressure of $4x10^{-7}$ Pa: MgO//Cr (40)/Fe₈₀Al₂₀ (t_{FeAl})/Mg (0.2)/Mg₄₀Al₆₀ (0.7)/oxidation /Ru (2) (thickness in nm). The MgO substrate and Cr buffer were annealed at 750°C for 1 h. Fe-Al was deposited by co-sputtering. The barrier (oxide of Mg/MgAl) was formed using an oxygen plasma. Stacks were annealed for 30 min *ex-situ* at temperature T_{ann} .

In Fig. 1, K_{eff} for a $t_{FeA1} = 0.8$ nm film (a) and interface anisotropy K_i (b) vs. T_{ann} evaluated by magnetization curves are plotted. At $T_{ann} = 450^{\circ}$ C, the largest PMA of $K_{eff} = 1.1$ MJ/m³ (K_{eff} · $t_{Fe} = 0.9$ mJ/m²) is observed, comparable to electron beam-evaporated Fe/MgO heterostructures [3]. K_i reaches around 2.8 mJ/m³ at 450°C and is strongly temperature dependent. Using scanning transmission electron microscopy imaging, the interface was found to be smooth and lattice-matched although significant Al diffusion into MgAl₂O₄ was confirmed. Therefore, the large

Fig. 1. *K*_{eff} and *K*_i vs. *T*_{ann} of Fe₈₀Al₂₀/MgAl₂O₄ stacks.

PMA can be attributed to the creation of effective Fe-O hybridization at the Fe-Al/MgAl₂O₄ interface through the atomic rearrangement. This work was partly supported by the ImPACT Program of Council for Science, Technology and Innovation, Japan, and JSPS KAKENHI 16H06332 and 16H03852.

Reference: [1] H. Sukegawa *et al.*, Appl. Phys. Lett. **110**, 112403 (2017). [2] J.P. Hadorn *et al.*, Acta Mater. **145**, 306 (2018). [3] J.W. Koo *et al.*, Appl. Phys. Lett. **103**, 192401 (2013).