Effect of Mn-doping on the properties of Mn, Mg-codoped γ-AlON green phosphor

NIMS 1, Yujin Cho1*, Takashi Takeda1, Kohsei Takahashi1, Takashi Kimura1, Rong-Jun Xie1, Naoto Hirosaki1, Takashi Sekiguchi1
E-mail: CHO.Yujin@nims.go.jp

Recently, narrow-band emitting phosphors attract particular attention for the application in white LED backlight in 8K-LCD TV, mobile phone, or tablet PCs. γ-AlON: Mg2+, Mn2+ is a promising candidate showing high color purity in green, small thermal quenching and high internal quantum efficiency under blue light irradiation [1, 2]. However, γ-AlON:Mg2+, Mn2+ has a quite low absorption efficiency due to spin-forbidden transition of 3d5 electrons in Mn2+. It is necessary to improve luminescence property to be used in w-LED application.

In this study, we varied Mn concentration in γ-AlON:Mg2+, Mn2+ phosphors. The influence of Mn was investigated using PL, CS-SEM, CL, EPMA, XRD, and ICP. The PL result shows that Mn2+ gives emission band centered at 512nm with 33nm FWHM. The intensity is gradually increased until 30 mol% Mn and then decreased due to the secondary phase generation (Fig. 1). Cross-sectional SEM images indicate that many small voids exist inside of the phosphor at 1mol% of Mn, and then their size grows with Mn doping to 30 mol% (Fig. 2). We consider the huge voids are attributed to the evaporation of Mn during sintering at high temperature. It should be noted that the concentration quenching of γ-AlON:Mg2+, Mn2+ phosphor is weak comparing with other rare-earth doped phosphors.

Fig 1. PLE and PL spectrum of 1, 10, 30, 50 mol% Mn-doped γ-AlON:Mg2+, Mn2+. PL intensity as a function of Mn doping amount is inset.

Fig 2. Cross-sectional SEM images of (a) 1mol% (b) 30 mol% Mn doped γ-AlON:Mg2+, Mn2+ phosphor