Effect of Mn-doping on the properties of Mn, Mg-codoped y -AlON green phosphor

NIMS¹, °Yujin Cho¹*, Takashi Takeda¹, Kohsei Takahashi¹, Takashi Kimura¹, Rong-Jun Xie¹, Naoto Hirosaki¹, Takashi Sekiguchi¹

E-mail: CHO.Yujin@nims.go.jp

Recently, narrow-band emitting phosphors attract particular attention for the application in white LED backlight in 8K-LCD TV, mobile phone, or tablet PCs. γ -AlON: Mg²⁺, Mn²⁺ is a promising candidate showing high color purity in green, small thermal quenching and high internal quantum efficiency under blue light irradiation [1, 2]. However, γ -AlON:Mg²⁺, Mn²⁺ has a quite low absorption efficiency due to spin-forbidden transition of 3d⁵ electrons in Mn²⁺. It is necessary to improve luminescence property to be used in w-LED application.

In this study, we varied Mn concentration in γ -AION:Mg²⁺, Mn²⁺ phosphors. The influence of Mn was investigated using PL, CS-SEM, CL, EPMA, XRD, and ICP. The PL result shows that Mn²⁺ gives emission band centered at 512nm with 33nm FWHM. The intensity is gradually increased until 30 mol% Mn and then decreased due to the secondary phase generation (Fig. 1). Cross-sectional SEM images indicate that many small voids exist inside of the phosphor at 1mol% of Mn, and then their size grows with Mn doping to 30 mol% (Fig. 2). We consider the huge voids are attributed to the evaporation of Mn during sintering at high temperature. It should be noted that the concentration quenching of γ -AION:Mg²⁺, Mn²⁺ phosphor is weak comparing with other rare-earth doped phosphors.

Fig 1. PLE and PL spectrum of 1, 10, 30, 50 mol% Mn-doped γ -AlON:Mg²⁺, Mn²⁺. PL intensity as a function of Mn doping amount is inset.

Fig 2. Cross-sectional SEM images of (a) 1mol% (b) 30 mol% Mn doped γ -AlON:Mg²⁺, Mn²⁺phosphor

[1] R. J. Xie et al, Appl. Phys. Lett. 92, 201905 (2008).[2] T. Takeda et al, J. Sol. Stat. Chem. 194, 71 (2012).