## m 面サファイア基板上に作製した $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub>バッファ層上への $\alpha$ -Ga<sub>2</sub>O<sub>3</sub>薄膜の作製と構造評価

## Fabrication and Structural Characterization of α-Ga<sub>2</sub>O<sub>3</sub> Thin Film on m-plane Sapphire with α-(Al,Ga)<sub>2</sub>O<sub>3</sub> Buffer Layer

鳥取大学<sup>1</sup>, FLOSFIA<sup>2</sup> <sup>O</sup>関山尊仁<sup>1</sup>, 太田勝也<sup>1</sup>, 赤岩和明<sup>1</sup>, 阿部友紀<sup>1</sup>, 四戸孝<sup>2</sup>, 市野邦男<sup>1</sup>

Tottori Univ.<sup>1</sup>, FLOSFIA.<sup>2</sup> <sup>O</sup>Takahito Sekiyama<sup>1</sup>, Katsuya Ota<sup>1</sup>, Kazuaki Akaiwa<sup>1</sup>, Tomoki Abe<sup>1</sup>,

Takashi Shinohe<sup>2</sup>, Kunio Ichino<sup>1</sup>

E-mail:m17j4033@faraday.ele.tottori-u.ac.jp

## 【研究背景·目的】

 $Ga_2O_3$ (酸化ガリウム)は約 5.0eV と大きなバンドギャップ値を示し、新規パワーデバイス材料とし て注目されている。低コストなサファイア基板上に基板と同じ結晶構造の $\alpha$ - $Ga_2O_3$ が成長すること が知られており、我々はこの $\alpha$ - $Ga_2O_3$ のデバイス応用を目指した研究を行っている。これまでに m 面サファイア基板上に作製した $\alpha$ - $Ga_2O_3$ 薄膜が従来の c 面サファイア基板上に作製した $\alpha$ - $Ga_2O_3$ 薄 膜よりも高い移動度が得られることが分かっている。一方で、m 面サファイア基板上に作製した  $\alpha$ - $Ga_2O_3$ 薄膜では結晶欠陥による転位散乱が原因で移動度が低下するという結果となり、より良好 な電気的特性を得るために結晶性の改善が必要であると分かった。そこで今回の報告では基板と

薄膜界面に $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub>バッファ層を成長することで界面辺りの格 子不整合を緩和させ結晶性の改善を試みた。本発表では m 面サフ ァイア基板上での $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> 混晶薄膜の作製と、 $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> バ ッファ層上に作製した $\alpha$ -Ga<sub>2</sub>O<sub>3</sub>薄膜の構造評価について報告する。

## 【実験方法·結果】

図 1 に基板温度 500~800°C で作製した $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> 混晶薄膜の XRD 20/0測定の結果を示した。また Ga:Al 原料比を 1:2,1:3,1:4 で変 化させた。 $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub>(30-30)のピークシフトから、Al 原料の比率 が大きくすると $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> 混晶薄膜中の Al 組成比が増加する事 が確認できた。図 2 に $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> バッファ層上に作製した  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> 薄膜とバッファ層なしで作製した $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> 薄膜の XRD 20/0測定の結果を示した。 $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> バッファ層上でも単結晶の  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> 薄膜が作製できることが分かった。また XRD  $\omega$ -scan 測定 による $\alpha$ -Ga<sub>2</sub>O<sub>3</sub>(30-30)の半値幅は $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> バッファ層上で約 800arcsec、バッファ層なしで約 1000arcsec でありバッファ層挿入 により $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> 薄膜の結晶性が向上することが分かった。当日は  $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> バッファ層上に作製した Sn-doped  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> 薄膜の電 気的特性評価についても報告する。



Fig.1 XRD 2 $\theta/\theta$  patterns of  $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub>

film on sapphire 500 ~ 800 °C



Fig.2 XRD 2 $\theta/\theta$  patterns of  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> on  $\alpha$ -(Al,Ga)<sub>2</sub>O<sub>3</sub> buffer layer and without  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> buffer layer