LiNbO₃・LiTaO₃薄板/水晶基板における縦型リーキーSAW 特性の 基板カット角依存性

Dependence of Substrate Cut Angle for LLSAW properties on LiNbO₃ or LiTaO₃ Thin Plate Bonded to Quartz Substrate

O山谷 浩介¹, 林 純貴¹, 鈴木 雅視¹, 垣尾 省司¹, 須崎 遥², 米内 敏文³, 岸田 和人³, 水野 潤² (1. 山梨大学, 2. 早稲田大学, 3. 日本製鋼所)

Kosuke Yamaya¹, Junki Hayashi¹, Masashi Suzuki¹, Shoji Kakio¹
Haruka Suzaki², Toshihumi Yonai³, Kazuhito Kishida³, and Jun Mizuno²
(1. Univ. of Yamanashi, 2. Waseda Univ., 3. The Japan Steel Works, Ltd.)
E-mail: t14ee054@yamanashi.ac.jp

1. はじめに

近年、移動通信システムの発展に伴い、弾性表面波(Surface Acoustic Wave: SAW)デバイスの高周波・高結合化が要求されている。高周波化を図る1つの方法として、伝搬減衰は大きいが高速な位相速度を有する縦型リーキーSAW(Longitudinal-type Leaky SAW: LLSAW)の利用が注目されている。その高結合化の方法として、LiNbO $_3$ (LN)薄板またはLiTaO $_3$ (LT)薄板をATカット $_45$ ° $_4$ 伝搬水晶と接合させることにより、LLSAW の結合係数 $_4$ が単体基板に対し $_4$ 名に増加することが明らかにされている[1, 2]。また、温度特性も単体と比べて向上することが実験的に報告されている[3]、しかし、接合後の伝搬減衰が大きく、 $_4$ 値が小さいという問題がある。

そこで、本研究では支持基板である水晶の 最適なカット角について理論的検討を行った. 解析した LLSAW 伝搬特性および周波数温度 係数(TCF)、共振特性について報告する.

2. 理論解析

支持基板として、Xカット水晶を取り上げた.この基板と LLSAW に対する K^2 が大きい $X31^\circ$ Y-LT を接合した構造において理論解析を行った. Fig. 1 に,波長 λ で規格化した LT の板厚 h/λ に対する伝搬減衰および K^2 を示す. Xカット水晶の伝搬方向は,LLSAW の伝搬減衰がより小さくなる方向とし、 32° Y 伝搬とした. AT カット水晶を用いた場合と比較すると,伝搬減衰の最小値が約1/40分の0.0005 dB/ λ となった. 加えて、 K^2 は AT カット水晶の時と同程度の値を示した. TCF については,支持基板変更前とほぼ同じ様相を示し,伝搬減衰が最小値を示す板厚($h\lambda$ =0.062)において-15.2 ppm/ $^\circ$ Cの TCF を示した.

次に,有限要素法(FEM)を用いて, $X31^\circ$ Y-LT 薄板上(h λ =0.07)に形成した IDT 型共振子(λ =8.0 μ m, 電極Al 膜厚 0.1 μ m)の無限周期構造における LLSAW 共振特性について解析を行った. 解析結果をFig. 2 に示す. 支持基板がAT

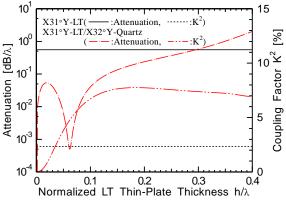


Fig. 1 Attenuation and K^2 vs LT thin plate thickness h/λ .

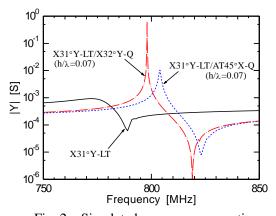


Fig. 2 Simulated resonance properties.

カット水晶の場合と比べ, 比帯域幅が 2.3%から 2.6%に, アドミタンス比が 62~dB から 117~dB に, 共振 Q 値が 1000 から 53400 にそれぞれ増加し, X カット水晶の支持基板としての優位性が理論的に示された. 今後は, X 32°Y 水晶との接合構造における実験的な評価を行う.

参考文献

- [1] M. Gomi, et al., Jpn. J. Appl. Phys., **56**, 07JD13 (2017).
- [2] 林, et al., 第78回応用物理学会秋季学術講演会予稿集 5p-PB7-3 (2017).
- [3] J. Hayashi, *et al.*, Proc. IEEE Ultrasonics. Symp., P4-C1-1 (2017).